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Abstract

The purpose of this Guide is to provide both logical and empirical evidence for medical teachers to improve their objective tests by
appropriate interpretation of post-examination analysis. This requires a description and explanation of some basic statistical and
psychometric concepts derived from both Classical Test Theory (CTT) and Item Response Theory (IRT) such as: descriptive
statistics, explanatory and confirmatory factor analysis, Generalisability Theory and Rasch modelling. CTT is concerned with the
overall reliability of a test whereas IRT can be used to identify the behaviour of individual test items and how they interact with
individual student abilities. We have provided the reader with practical examples clarifying the use of these frameworks in test

development and for research purposes.

Introduction

The output of the examination process is transferred to
students either formatively, in the form of feedback, or
summatively, as a formal judgement on performance.
Clearly, to produce an output which fulfils the needs of
students and the public, it is necessary to define, monitor and
control the inputs to the process. Classical Test Theory (CTT)
assumes that inputs to post-examination analysis contain
sources of measurement error that can influence the student’s
observed scores of knowledge and competencies. Sources of
measurement error is derived from test construction, admin-
istration, scoring and interpretation of performance. For
example; quality variation among knowledge-based questions,
differences between raters, differences between candidates
and variation between standardised patients (SPs) within an
Objective Structured Clinical Examination (OSCE).

To improve the quality of high-stakes examinations, errors
should be minimised and, if possible, eliminated. CTT assumes
that minimising or eliminating sources of measurement errors
will cause the observed score to approach the true score.
Reliability is the key estimate showing the amount of
measurement error in a test. A simple interpretation is that
reliability is the correlation of the test with itself; squaring this
correlation, multiplying it by 100 and subtracting from 100
gives the percentage error in the test. For example, if an
examination has a reliability of 0.80, there is 36% error variance
(random error) in the scores. As the estimate of reliability
increases, the fraction of a test score that is attributable to error
will decrease. Conversely, if the amount of error increases,
reliability estimates will decrease (Nunnally & Bernstein 1994).

Practice points

e Health profession educators need to interpret test data
using psychometric methods.

e EFA describes how and to what extent a group of items
in a test are related to a set of latent constructs or factors.
CFA confirms the modelled relationship between the
assessed factors.

e Generalisability theory extends CTT allowing assessors
to isolate and estimate multiple errors that are influenc-
ing the results of a test.

e IRT, including Rasch modelling, produces a variety of
data displays, encapsulating both student and item
properties that enable test developers to monitor and
improve the quality of test questions.

Although some medical schools have adopted psychomet-
ric methods such as reliability testing and item analysis to
monitor and improve OSCE examination (Lawson 2006;
Iramaneerat et al. 2008), the use of advanced psychometric
methods such as generalisability theory and Rasch modelling
has yet to become widespread.

Therefore, the objective of this Guide is to illustrate the use
and interpretation of traditional and advanced psychometric
methods using several examples. Ultimately, readers are
encouraged to consider using these methods with their own
exam data. We have explained how to generate post-
examination data from objective tests using SPSS elsewhere
(Tavakol & Dennick 2011b), and therefore we will not discuss
these methods in this article. We shall begin with the
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traditional interpretation of post-exam data from objective tests
and OSCEs and then look at the application of modern
psychometric methods. We will use simulated data to exem-
plify methods for improving subsequent examinations.

Interpretation of basic
post-examination results

Individual questions

A descriptive analysis is the first step in summarising and
presenting the raw data of an examination. A distribution
frequency for each question immediately shows up the
number of missing questions and the patterns of guessing
behaviour. For example, if there were no missing question
responses identified, this would suggest that students either
had good knowledge or were guessing for some questions.
Conversely, if there were missing question responses, this
might be either an indication of an inadequate time for
completing the examination, a particularly hard exam or
negative marking is being used (Stone & Yeh 2000; Reeve
et al. 2007).

The means and variances of test questions can provide us
with important information about each question. The mean of
a dichotomous question, scored either 0 or 1, is equal to the
proportion of students who answer correctly, denoted by p.
The variance of a dichotomous question is calculated from the
proportion of students who answer a question correctly (p)
multiplied by those who answer the question incorrectly (¢).

(a)

Mode

\Median

Mean

(b)

To obtain the standard deviation (SD), we merely take the
square root of p x g. For example, if in an objective test, 300
students answered Question 1 correctly and 100 students
answered it incorrectly, the p value for Question 1 will be
equal to 0.75 (300/400), and the variance and SD will be 0.18
(0.75 x 0.25) and 0.42 (+/0.18) respectively. The SD is useful
as a measure of variation or dispersion within a given question.
A low SD indicates that the question is either too easy or too
hard. For example, in the above example, the SD is low
indicating that the item is too easy. Given the item difficulty of
Question 1 (0.75) and a low item SD, one can conclude that
responses to item was not dispersed (there is little variability
on the question) as most students paid attention to the correct
response. If the question had a high variability with a mean at
the centre of distribution, the question might be useful.

Total performance

After obtaining the mean and SD for each question, the test can
be subjected to conventional performance analysis where the
sum of correct responses of each student for each item is
obtained and then the mean and SD of the total performance
are calculated. Creating a histogram using SPSS allows us to
understand the distribution of marks on a given test. Students’
marks can take either a normal distribution or may be skewed
to the left or right or distributed in a rectangular shape.
Figure 1(a) illustrates a positively skewed distribution. This
simply shows that most students have a low-to-moderate mark
and a few students received a relatively high mark in the tail.

Mode

Megn

Positive Skew

(©

Negative Skew

Mean

Normal Distribution

Figure 1.
el62

Some shapes of distributions.

RIGHTS LI N iy



Med Teach Downloaded from informahealthcare.com by Otterbein College on 01/24/15
For personal use only.

Post-examination interpretation of objective test data

In a positively skewed distribution, the mode and the median
are greater than the mean indicating that the questions were
hard for most students. Figure 1(b) shows a negatively skewed
distribution of students’ marks. This shows that most students
have a moderate-to-high mark and a few students received
relatively a low mark in the tail. In a negatively skewed
distribution, the mode and the median are less than the mean
indicating that the questions were easy for most students.

Figure 1(c) shows most marks distributed in the centre of a
symmetrical distribution curve. This means that half the
students scored greater than the mean and half less than
mean. The mean, mode and median are identical in this
situation. Based on this information, it is hard to judge whether
the exam is hard or easy unless we obtain differences between
the mode, median or mean plus an estimate of the SD. We
have explained how to compute these statistics using SPSS
elsewhere (Tavakol & Dennick 2011b; Tavakol & Dennick
2012).

As an example, we would ask you to consider the two
distributions in Figure 2, which represent simulated marks of
students in two examinations.

Both the mark distributions have a mean of 50, but show a
different pattern. Examination A has a wide range of marks,
with some below 20 and some above 90. Examination B, on
the other hand, shows few students at either extreme. Using
this information, we can say that Examination A is more
heterogeneous than Examination B and that Examination B is
more homogenous than Examination A.

In order to better interpret the exam data, we need to
obtain the SD for each distribution. For example, if the mean
marks for the two examinations are 67.0, with different SDs of
6.0 and 3.0, respectively, we can say that the examination with
a SD of 3.0 is more homogenous and hence more consistent in
measuring performance than the examination with a SD of 6.0.
A further interpretation of the value of the SD is how much it
shows students’ marks deviating from the mean. This simply
indicates the degree of error when we use a mean to explain
the total student marks. The SD also can be used for
interpreting the relative position of individual students in a
normal distribution. We have explained and interpreted it
elsewhere (Tavakol & Dennick 2011a).

Examination A

Frequency

1 ! ' ' I

Frequency

Interpretation of classical item
analysis

In scientific disciplines, it is often possible to measure variables
with a great deal of accuracy and objectivity but when
measuring student performance on a given test due to a wide
variety of confounding factors and errors, this accuracy and
objectivity becomes more difficult to obtain. For instance, if a
test is administrated to a student, he or she will obtain a variety
of scores on different occasions, due to measurement errors
affecting his or her score. Under CTT, the student’s score on a
given test is a function of the student’s true score plus random
errors (Alagumalai & Curtis 2010), which can fluctuate from
time to time. Due to the presence of random errors influencing
examinations, we are unable to exactly determine a student’s
true score unless they take the exam an infinite number of
times. Computing the mean score in all exams would eliminate
random errors resulting in the student’s score eventually
equalling the true score. However, it is practically impossible
to take a test an infinite number of times. Instead we ask an
infinite number of students (in reality a large cohort!) to take
the test once allowing us to estimate a generalised standard
error of measurement (SME) from all the students’ scores. The
SME allows us to estimate the true score of each student which
has been discussed elsewhere (Tavakol & Dennick 2011b).

Reliability

It is worth reiterating here that just as the observed score is
composed of the sum of the true score and the error score, the
variance of the observed score in an examination is made up
of the sum of the variances of the true score and the error
score, which can be formulated as follows:

Variance (Observed score)

= Variance (True score) + Variance (Errors) (1)

Now imagine a test has been administered to the same
cohort several times. If there is a discrepancy between the
variance of the observed scores for each individual, on each
test, the reliability of the test will be low. The test reliability is

Examination B

T T T T T
10 30 50 70 90
Scores

1 T T T T
10 30 50 70 90
Scores

Figure 2. Two different distributions from two examinations.
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defined as the ratio of the variance of the true score to the
variance of the observed score:

Variance (True score)

Reliability = (2)

Variance (Observed score)

Given this, the greater the ratio of the true score variance to
the observed score variance, the more reliable the test. If we
substitute variance (true scores) from Equation (1) in Equation
(2), the reliability will be as follows:

Variance (Observed score) — Vaiance (Error)

Reliability =
eliability Variance (Observed score)

3
And then we can rearrange the reliability index as follows:

Vaiance (Error)
Variance (Observed score)

Reliability = 1 — (4)

This equation simply shows the relationship between
source of measurement error and reliability. For example,
if a test has no random errors, the reliability index is 1, whereas
if the amount of error increases, the reliability estimate will
decrease.

Increasing the test reliability

The statistical procedures employed for estimating reliability
are Cronbach’s alpha and the Kuder—Richardson 20 formula
(KR-20). If the test reliability was less than 0.70, you may need
to consider removing questions with low item-total correlation.
For example, we have created a simulated SPSS output for four
questions in Tables 1 and 2.

Table 1 shows Cronbach’s alpha for four questions, 0.72.
Table 2 shows item-total correlation statistics with the column
headed ‘Cronbach’s Alpha if Item deleted’. (Item-total corre-
lation is the correlation between an individual question score
and the total score).

Table 1. Reliability statistics, simulated output from SPSS.

Cronbach’s alpha

Cronbach’s based on Number
alpha standardised items of items
0.725 0.724 4

The fourth question in the test has a total-item correlation of
—0.51 implying that responses to this particular question have
a negative correlation with the total score. If we remove this
question from the test, the alpha of the three remaining
questions increase from 0.725 to 0.950, making the test
significantly more reliable.

Tables 3 and 4 show the output SPSS after removing
Question 4:

Tables 3 and 4 illustrate the impact of removing Question 4
from the test, which significantly increases the value of alpha.

However, if we now remove Question 2, the value of the
alpha for the test will be perfect, i.e. 1, which means each
question in the test must be measuring exactly the same thing.
This is not necessarily a good thing as it suggests that there is
redundancy in the test, with multiple questions measuring the
same construct. If this is the case, the test length could be
shortened without compromising the reliability (Nunnally &
Bernstein 1994). This is because the reliability is a function
of test length. The more the items, the more the reliability of
a test.

Although Cronbach’s alpha and KR-20 are useful for
estimating the reliability of a test, they conflate all sources of
measurement error into one value (Mushquash & O’Connor
2006). Recall that true scores equal observed scores plus
errors, which is derived from a variety of sources. The
influence of each source of error can be estimated by the
coefficient of generalisability, which is similar to a reliability
estimate in the true score model (Cohen & Swerdlik 2010).
Later we will describe how to identify and reduce sources of
measurement errors using generalisability theory or G-theory
as it is known. What is more, in our previous Guide (Tavakol &
Dennick 2012), we explained and interpreted item difficulty
level, item discrimination index and point bi-serial coefficient
in terms of CTT. In this Guide, we will explain and interpret
these concepts in terms of Item Response Theory (IRT) using
item characteristic parameters (item difficulty and item dis-
crimination) and the student ability/performance to all ques-
tions using the Rasch model.

Table 3. Reliability statistics, simulated output from SPSS (after

removing Question 4).

Cronbach’s Number
alpha of items
0.950 3

Table 2. ltem-total statistics.

Table 4. ltem-total statistics (after removing Question 4).

Scale
Scale mean variance  Corrected  Cronbach’s Scale Scale Cronbach’s

if item if item item-total alpha if mean variance Corrected alpha

Question deleted deleted  correlation  item deleted if item if item item-total if item
Question deleted deleted corrections deleted
1 1.700 1.04 0.818 0.475
2 1.800 1.06 0.712 0.536 1 1.400 0.838 0.945 0.889
3 1.700 1.046 0.818 0.475 2 1.300 0.869 0.802 1.00
4 2.00 1.86 —0.051 0.950 3 1.400 0.838 0.946 0.889
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Factor analysis

Linear factor analysis is widely used by test developers in order
to reduce the number of questions and to ensure that
important questions are included in the test. For example,
the course convenor of cardiology may ask all medical
teachers involved in teaching cardiology to provide 10
questions for the exam. This might generate 100 questions,
but all these questions are not testing the same set of concepts.
Therefore, identifying the pattern of correlations between the
questions allows us to discover related questions that are
aimed at the underlying factors of the exam. A factor is a
construct which represents the relationship between a set of
questions and will be generated if the questions are correlated
with the factor. In factor analysis language, this refers to factor
‘loadings’. After factor analysis is carried out, related questions
load onto factors which represent specific named constructs.
Questions with low loadings can therefore be removed or
revised.

If a test measures a single trait, only one factor with high
loadings will explain the observed question relationships and
hence the test is uni-dimensional. If multiple factors are
identified, then the test is considered to be multi-dimensional.

There are two main components to linear factor analysis:
exploratory and confirmatory. Exploratory Factor Analysis
(EFA) identifies the underlying constructs or factors within a
test and hypothesises a model relationship between them.
Confirmatory Factor Analysis (CFA) validates whether the
model fits the data using a new data set. Below, each method
is explained.

Exploratory factor analysis

EFA is widely used to identify the relationships between
questions and to discover the main factors in a test as
previously described. It can be used either for revising exam
questions or choosing questions for a specific knowledge
domain. For example, if in the cardiology exam we are
interested in testing the clinical manifestations of coronary
heart disease, we simply look for the questions which load on
to this domain. The following simulated example, using an

examination with 10 questions taken by 50 students, demon-
strates how to improve the questions in an examination. This
allows us to demonstrate how to revise and strengthen exam
questions and to calculate the loadings on the domain of
interest. As well as identifying the factors EFA also calculates
the ‘communality’ for each question. To understand the
concept of communality, it is necessary to explain the variance
(the variability in scores) within the EFA approach.

We have already learnt from descriptive statistics how to
calculate the variance of a variable. In the language of factor
analysis, the variance of each question consists of two parts.
One part can be shared with the other questions, called
‘common variance’; the rest may not be shared with other
questions, called ‘error’ or ‘random variance’. The communal-
ity for a question is the value of the variance accounted for by
the particular set of factors, ranging from 0 to 1.00. For
example, a question that has no random variance would have
a communality of 1.00; a question that has not shared its
variance with other questions would have a communality of
0.00. The communality shown for Question 9 (Table 5) is 0.85,
that is 85% of the variance in Question 9 is explained by factor
1 and factor 2, and 15% of the variance of Question 9 has
nothing in common with any other question. To compute the
shared variances for each question in SPSS, the following steps
are carried out in SPSS (SPSS 2009). From the menus, choose
‘Analyse’, ‘Dimension Reduction’ and ‘Factor’, respectively.
Then move all questions on to the ‘Variables’ box. Choose
‘Descriptive’ and then click ‘Initial Solution” and ‘Coefficients’,
respectively. Then click ‘Rotation’. Choose ‘Varimax’ and click
on ‘Continue’ and then ‘OK’. In Table 5, we have combined
the simulated data of the SPSS output together.

Table 5 shows that two factors have emerged. Factor 1
demonstrates excellent loading with Questions 9, 2, 6, 10, 4, 1
and 3 and Factor 2 demonstrates excellent loading with
Questions 7 and 8, indicating these items have a strong
correlation with Factors 1 and 2. It should be noted that
loadings with values greater than 0.71 are considered excellent
(0.71 x 0.71 =10.50 x 100; i.e. 50% common variance between
the item and the factor, or 50% of the variation in the item can
be explained by the variation in the factor, or 50% of the

Table 5. Rotated two factors with communalities ().

Question 5 included After removing Question 5
Question Factor 1 Factor 2 h? Factor 1 Factor 2 h?
9 0.92 —0.02 0.85 0.92 0.005 0.85
2 0.92 —0.02 0.85 0.92 0.005 0.85
6 0.81 0.21 0.71 0.80 0.24 0.71
10 0.79 —-0.38 0.77 0.80 —0.36 0.77
4 0.79 —0.38 0.77 0.80 —0.36 0.77
1 0.73 0.36 0.69 0.72 0.38 0.68
3 0.69 0.16 0.50 0.69 0.18 0.51
5 -0.28 0.08 0.08
7 0.01 0.96 0.92 —0.0017 0.96 0.92
8 0.01 0.96 0.85 —0.0017 0.96 0.92
Percentage of 47.23 23.60 70.83 51.80 26.20 78.00
variance explained
by each factor
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variance is accounted for by the item and the factor),
0.63 (40% common variance) very good, 0.45 (20% common
variance) fair. Values less than 0.32 (10% common variance)
are considered poor and less contribute to the overall test and
they should be investigated (Comrey & Lee 1992; Tabachnick
& Fidell 2006). Table 5 also shows communalities for each
question in the column labelled 4°. For example, 92% of the
variance in Question 2 is explained by the two factors that
have emerged from the EFA approach. The lowest commu-
nality is for Question 5, indicting 8% of the variance is
explained by this question. Low values of less than 30%
indicate that the variance of the question does not relate to
other questions loaded on to the identified factors. In Table 5,
Question 5 has the lowest communality figure and has not
loaded onto Factors 1 or 2, suggesting this question should be
revised or discarded.

Table 5 also shows the values of variance explained by the
two factors that have been identified from the EFA approach;
0.47 of the variance is accounted for by Factor 1 and 0.23 of
the variance is accounted for by Factor 2. Therefore, 0.70 of
the variance is accounted for by all of the questions. However,
if we delete Question 5, we can increase the total variance
accounted for to 0.78. A further interpretation of Table 5 is that
the vast majority of questions have been loaded on to Factor 1,
providing evidence of convergence and discrimination for the
construct validity of the test. We can argue that the test is
convergent as there are high loadings on to Factor 1. The test is
also discriminant as the questions that have loaded on to
Factor 1 have not loaded on to Factor 2. This means that Factor
2 measures another construct/concept which is discriminated
from Factor 1. Because two factors have been identified, it
would be appropriate to calculate Cronbach’s alpha
co-efficient for each factor because they are measuring two
different constructs. It should be noted that items which load
on more than two factors need to be investigated.

Confirmatory factor analysis

The technique of CFA has been widely used to validate
psychological tests but has been less used to evaluate and
improve the psychometric properties of exam questions. The
EFA approach can reveal how exam questions are correlated
or connected to an underlying domain of factors. For example,
an EFA approach may show that the internal structure of a 100
question test consist of three underlying domains, say physical
examination, clinical reasoning and communication skills. The
number of factors identified constitutes the components of a
hypothesised model, the factor structure model. In the above
example, the model would be termed a three-factor model.
The CFA approach uses the hypothesised model extracted
by EFA to confirm the latent (underlying) factors. However,
in order to confirm model fitting, a new data set must be used
to avoid a circular argument. For example, the same test could
be administered to a different but comparable group of
students.

Therefore, educators must first identify a model using EFA
and test it using CFA. This approach also allows educators to
revise exam questions and the factors underlying their
constructs (Floys & Widaman 1995). For example, suppose

el66

EFA has revealed a two-factor model from an exam consisting
of history-taking and physical examination questions. The
researcher wishes to measure the psychometric characteristics
of the questions and test the overall fit of the model to improve
the validity and reliability of the exam. This can be achieved by
the use of structural equation modelling (SEM) which deter-
mines the goodness-of-fit of the newly input sample data to the
hypothesised model. The model fit is assessed using Chi-
square testing and other fit indices. In contrast to other
statistical hypothesis testing procedures, if the value of Chi-
square is not significant, the new data fit and the model is
confirmed. However, as the value of Chi-square is a function
of increasing or decreasing sample size, other fit indices
should also be investigated (Dimitrov 2010). These indices are
the comparative fit index (CFI) and the root mean square error
of approximation (RMSEA). A CFI value of greater than 0.90
shows a psychometrically acceptable fit to the exam data. The
value of RMSEA needs to be below 0.05 to show a good fit
(Tabachnick & Fidell 2006). A RMSEA of zero indicates that the
model fit is perfect. It should be noted that CFA can be run by a
number of popular statistical software programmes such as
SAS, LISREL, AMOS and Mplus. For the purpose of this article,
we choose AMOS (Analysis of Moment Structures) for its use of
ease. The AMOS software program can easily create models
and calculate the value of Chi-square as well as the fit indices.
In the above example, a test of 8 questions has two factors,
history-taking and physical examination and the variance of
these eight exam questions can be explained by these two
highly correlated factors. The test developer draws the two-
factor model (the path diagram) in AMOS to test the model
(Figure 3). Before estimating the parameters of the model,
click on the ‘view’ and click on ‘Analysis Properties’ and then
click on ‘Minimization history’, Standardised estimates,
‘Squared multiple Correlations’ and ‘Modification indices’. To
run the estimation, from the menu at the top, click on
‘Analyze’, then click on ‘Calculate Estimates’.

The output is given in Table 6. SEM calculates the slopes
and intercepts of calculated correlations between questions
and factors. From a CTT, the intercept is analogous to the item
difficulty index and the slope (standardised regression
weights/coefficients) is analogous to the discrimination index.

Table 6 shows that Question 1 in history-taking and
Question 3 in  physical examination were easy
(intercept =0.97) and hard (0.08), respectively. Table 6 also
shows that Question 4 in history-taking is not contributing to
overall history-taking score (slope =—0.03). Further analysis
was conducted to assess degree of fit model to the exam data.
Focusing on Table 7, the absence of significance for the Chi-
square value (p=0.49) implies support for the two- factor
model in the new sample. In reviewing values of both CFI and
RMSEA in Table 7, it is evident that the two-factor model
represents a best fit to the exam data for the new sample.

Further evidence for the relationship between the history-
taking and physical examination components of the test is
revealed by the calculation of a 0.70 correlation between the
two factors, supporting the hypothesised two-factor model. It
should be noted that AMOS will display the correlation
between factors/components by clicking the ‘view the
output diagram’ button. You can also view correlation
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History-

Taking

Physical
Exam

Figure 3. The two-factor model.

Table 6. Simulated parameters revealed by the two-factor model.

Slope:

Question Slope: physical

Question type number Intercept history-taking examination
History-taking 1 0.97 0.21 0.50
2 0.85 0.24 0.32
3 0.78 0.31 0.02
4 0.45 —0.03 0.26
Physical 1 0.30 0.37 0.19
examination 2 0.64 0.26 0.27
3 0.08 0.29 0.22
4 0.39 0.32 0.16

Table 7. Goodness-of-fit indices for the two-factor model.

RMSEA

Model X2 df p CFl

Total sample 33.5 34 0.49 0.97 0.02

estimates from ‘text output’. From the main menu, choose view
and then click on ‘text output’.

Generalisability theory analysis

We would ask you to recall that reliability is concerned with
the ability of a test to measure students’ knowledge and
competencies consistently. For example, if students are
re-examined with the same items and with the same conditions
on different occasions, the results should be more or less the
same. In CTT, the items and conditions may be the causes of
measurement errors associated with the obtained scores.
Reliability estimates, such as KR-20 or Cronbach’s alpha,
cannot identify the potential sources of measurement error
associated with these items and conditions (also known as
facets of the test) and cannot discriminate between each one.
However, an extension of CTT called Generalisability Theory

or G-theory, developed by Lee J. Cronbach and colleagues
(Cronbach et al. 1972), attempts to recognise, estimate and
isolate these facets allowing test constructors to gain a clearer
picture of sources of measurement error for interpreting the
true score. One single analysis of, for example, the results of
an OSCE examination, using G-theory can estimate all the
facets, potentially producing error in the test. Each facet of
measurement error has a value associated with it called its
variance component, calculated via an analysis of variance
(ANOVA) procedure, described below. These variance com-
ponents are next used to calculate a G-coefficient which is
equivalent to the reliability of the test and also enables one to
generalise students’ average score over all facets.

For example, imagine an OSCE has used SPs, a range of
examiners and various items to assess students’ performance
on 12 stations. SPs, examiners and items and their interactions
(e.g. interaction between SPs and items) are considered as
facets of the assessment. The score that the student obtains
from the OSCE will be affected by these facets of measurement
error and therefore the assessor should estimate the amount of
error caused by each facet. Furthermore, we examine students
using a test to make a final decision regarding their perfor-
mance on the test. To make this decision, we need to
generalise a test score for each student based on that score.
This indicates that assessors should ensure the credibility and
trustworthy of the score as means to making a good decision
(Raykov & Marcoulides 2011). Therefore, the composition of
errors associated with the observed (obtained) scores that
gained from a test need to be investigated. G-theory analysis
can then provide useful information for test constructors to
minimise identified sources of error (Brennan 2001). We will
now explain how to calculate the G-coefficient from variance
components.

G-coefficient calculation

To calculate the G-coefficient from variance components of
facets, test analysers traditionally use the ANOVA procedure.
ANOVA is a statistical procedure by which the total variance
present in a test is partitioned into two or more components
which are sources of measurement error. Using the calculated
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File Edit “iew Data Transform Analyze Graphs  Uilities Add-ons  Window  Help
EHE T O xEE A HE ERE S0 W
10; |
Examinerl | Examiner? | Examiner3 var var var

1 14.00 22.00 23.00

2 13.00 9.00 12.00

3 8.00 8.00 9.00

4 14.00 8.00 8.00

5 22.00 9.00 7.00

B 20.00 17.00 23.00

i 19.00 11.00 12.00

8 20.00 14.00 16.00

= 16.00 11.00 12.00

10 11.00 13.00 14.00

Figure 4. Hypothetical scoring of 10 students by three examiners on three different OSCE stations.

mean square of each source of variation from the ANOVA
output (e.g. SPs, items, assessors, etc.), investigators determine
the variance components and then calculate the G-coefficient
from these values.

However, SPSS and other statistical packages like the
Statistical Analysis System (SAS) now allow us to calculate the
variance components directly from the test data. We will now
illustrate how to obtain the variance components from SPSS
directly for calculating the G-coefficient. The procedure used
varies according to the number of facets in the test. There are
single facet and multiple facet designs as described below.

Single facet design. A single facet design examines only a
single source of measurement error in a test although in reality
others may exist. For example, in an OSCE examination, we
might like to focus on the influence of examiners as sources of
error. In G-theory, this is called a one-facet ‘student (s)
crossed-with-examiner (e)’ design: (s x e). Consider an OSCE
in which three examiners independently rate a cohort of
clinical students on three different stations using a 1-5 check
list of 5 items. The total mark can therefore range from 5 to 25,
with higher mark suggesting a greater level of performance in
each station. Using G-theory, we can find out what amount of
measurement error is generated by the examiners. For
illustrative purpose, only 10 students and the three examiners
are presented in the Data Editor of SPSS in Figure 4.

Before analysing, the data needs to be restructured. To this
end, from the data menu at the top of the screen, one clicks on
‘restructure’ and follows the appropriate instructions. In
Figure 5, the restructured data format is presented.

To obtain the variance components, the following steps are
carried out:

From the menus chooses ‘Analyse’, ‘General Linear Model’,
respectively. Then click on ‘variance components’. Click on
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‘Score’ and then click on the arrow to move ‘Score’ into the
box marked ‘dependent variable’. Click on student and
examiner to move them into ‘random factors’. After ‘variance
estimates’ appears, click OK and the contribution of each
source of variance to the result is presented as shown in
Table 8.

Table 8 shows that the estimated variance components
associated with student and examiner are 10.144 and 1.578,
respectively. Expressed as a percentage of the total variance, it
can be seen that 40.00 % is due to the students and 6.20 % to
the examiners. However, the variance of the students is not
considered a facet of measurement error as this variation is
expected within the student cohort and in terms of G-theory, it
is called the ‘object of measurement’ (Mushquash & O’Connor
2006). Importantly for our analysis, the findings indicate that
the examiners generated 6.20% of the total variability, which is
considered a reasonably low value. Higher values would
create concern about the effect of the examiners on the test.
The residual variance is the amount of variance not attributed
to any specific cause but is related to the interaction between
the different facets and the object of measurement of the test.
In this example, 13.656 or 53.80% of the variance is accounted
for by this factor.

On the basis of the findings of Table 8, we are now in a
position to calculate the generalisability coefficient. In this
case, the G-coefficient is defined as the ratio of the student
variance component (denoted af) to the sum of the student
variance component and the residual variance (denoted o2,
divided by the number of examiners (k) (Nunnally and
Bernstein 1994 ) and written as follows:

2
2 O

P = TR
0'3 + (orzcsidLlal/k)
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File  Edit “iew Data Transform  Analyze

Graphs  Ltilties Add-ons  Window  Help

FHE T O EER A Bd SEE S0 ¥

EE |
Student Examiner Score var var var
1 1 1 14.00
2 1 2 22.00
z 1 i 23.00
4 2 1 13.00
3 2 2 9.00
B 2 3 12.00
7 3 1 8.00
g 3 2 8.00
E 3 3 a.00
10 4 1 14.00
11 4 . 9.00
12 4 3 8.00
13 5 1 22.00
14 5 2 9.00
18 5 | 7.00
16 5 1 20.00
17 B 2 17.00
18 B 3 23.00
19 ? 1 19.00
20 7 2 11.00
21 7 3 12.00
22 8 1 20.00
25 8 2 14.00
24 8 3 16.00
25 9 1 16.00
2B 9 2 11.00
27 9 3 12.00
28 10 1 11.00
29 10 2 13.00
30 10 3 14.00

Figure 5. Restructured data from Figure 4.

Inserting the values from above, this gives:

s 10.144 N
7 10.144 + (13.656/3)

o

The G-coefficient, traditionally depicted as p?, is the
counterpart of the well-known reliability coefficient with

0.70

values ranging from 0 to 1.0. (It is worth noting that the
G-coefficient in the single facet design described above is
equal to Cronbach’s alpha coefficient (for non-dichotomous
data) and to Kuder—Richardson 20 (for dichotomous data). The
interpretation of the value of the G-coefficient is that it
represents the reliability of the test taking into account the
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Table 8. Results of variance components estimates.

Table 9. Results of variance components estimates.

Variance
component (s x e) Percentage
Source of variation design variance
Student 10.144 40.00
Examiner 1.578 6.20
Student x examiner 13.656% 53.80

Note: ®Residual variance.

multiple sources of error calculated from their variance
components. The higher the value of the G-coefficient, the
more we can rely on (generalise) the students’ scores and the
less influence the study facets have been. In the above
example, the G-coefficient has a reasonably high value and the
variance component for examiners is low. This shows that the
examiners did not have significant variation in scoring students
and that we can have confidence in the students’ scores.

A multi-facet design. Clearly in an OSCE examination, there
are a number of other potential facets that need to be taken
into consideration in addition to the examiners. For example,
the number of stations, the number of SPs and the number of
items on the OSCE checklist. We will now explain how to
calculate the variance components and a G-coefficient for a
multi-facet design building on the previous example. Each of
three stations now has a SP and a 5-item checklist leading to an
overall score for each student. Here, examiners, stations, SPs
and items can affect the student performance and hence are
facets of measurement error.

However, because we are now interested in the influence
of the number items as a source of error, we need to input the
score for each item (i), for each student (s), for each station
(sv), for each SP (sp) and for each examiner (e). After entering
exam data into SPSS and restructuring it, analysis of variance
components is carried out as described before. Table 9 shows
the hypothetical results of variance components for potential
sources of measurement error in the OCSE results.

Table 9 shows that 59.16 %, 16.37 % and 15.04 of the
sources of measurement error are generated by interactions
between student, item and examiner, interactions between
student and examiner and student, respectively. The lack of
residual variance between other combinations of facets
indicates that student scores cannot fluctuate owing to these
interactions and consequently they do not lead to any
measurement error. The value for the variance component
for examiners (0.06) in Table 9 differs from the value in Table 8
(1.57) because in creating the multi-facet matrix, we are using
individual item scores from students rather than their total
mark for all stations. These findings also indicate that there is
little disagreement about the actual scores given to student by
each examiner (2.88%). We can insert the values of the
variance components and the numbers associated with each
facet shown in Table 8 into the following equation:

2
2 O

T 02+ (02 /k+ 2[R+ 0L [k + 0% [k + 02 g/ B)

0
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Variance
component
Source of Sxexix spxst Percentage
variation (n) design of variance
Student (10) 0.313 15.04
Examiner (3) 0.060 2.88
Item (5) 0.083 1.59
SP (3) 0.000 0.00
Station (3) 0.000 0.00
Student x item 0.096 4.62
Student x examiner 0.341 16.37
Student x item x examiner 1.231 59.16
[tem x examiner x station 0.007 0.34

Notes: Residual variances for interactions between facets equal to zero have
not been displayed in the table. They have no influence on the test and are
redundant.

Zero values of variance components are not inserted, thus
excluding SPs and stations.

31
. 0313 00
0313 + ( 0.060 /3 4 (0.033/5))

In this example, the G-coefficient is high and the variance
components of the facets are low, hence the reliability of the
OSCE is very good. If higher values of variance components
are found for particular facets, then they need to be examined
in more detail. This might lead to better training for examiners
or modifying items in checklists or the number of stations.
Given the high G-coefficient shown with these hypothetical
data, we could in principle reduce the values of k for
individual facets whilst maintaining a reasonably high value
of G and hence maintaining the reliability of the OSCE exam.
In the real world of OSCEs, this could lead to simplifications
and a reduction in the cost of OSCE examining. As for
Cronbach’s alpha statistic, there are different views concerning
acceptable values for G ranging from 0.7 to 0.95 (Tavakol and
Dennick 2011a, b). This ability to manipulate the generalisa-
bility equation in order to see how examination factors can
influence sources of measurement error and hence reliability
lies at the heart of decision study or D-study (Raykov &
Marcoulides 2011). Thus G-theory and D-study provide a
greater insight into the various processes occurring in exam-
inations, hidden by merely measuring Cronbach’s alpha
statistic. This enables assessors to improve the quality of
assessments in a much more specific and evidence-based way.

The IRT and Rasch modelling

Test constructors have traditionally quantified the reliability of
exam tests using the CTT model. For example, they use item
analysis (item difficulty and item discrimination), traditional
reliability coefficients (e.g. KR-20 or Cronbach’s alpha), item-
total correlations and factor analysis to examine the reliability
of tests. We have just shown how G-theory can be used
to make more elaborate analyses of examination conditions
with a view to monitoring and improving reliability.
CTT focuses on the test and its errors but says little about
how student ability interacts with the test and its items
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Table 10. A simulated 7-item test of anatomy ability.

Student [tem 1 ltem 2 tem 3 ltem 4
1 1 0 0 0

2 1 1 1 1

3 1 1 1 0

4 1 0 1 0

5 0 0 0 0

6 1 0 1 1

7 1 0 0 1

FC? 0.85 0.28 0.57 0.43
ID° (b) —1.73 0.90 —-0.28 0.28

ltem 5 ltem 6 ltem 7 Fc? SAP (9)
1 0 1 0.43 —-0.28
0 1 1 0.71 0.90
1 0 0 0.57 0.28
1 0 1 0.57 0.28
0 0 1 0.14 —1.82
1 0 0 0.57 0.28
1 0 0 0.43 -0.28
0.71 0.14 0.57

—0.89 1.80 -0.28

Note: #Fraction correct, Pstudent ability and Citem difficulty.

(Raykov & Marcoulides 2011). On the other hand, the aim of
IRT is to measure the relationship between the student’s ability
and the item’s difficulty level to improve the quality of
questions. Analyses of this type can also be used to build up
better question banks for Computer Adaptive Testing (CAT).

Consider a student taking an exam in anatomy. The
probability that the student can answer item 1 correctly is
affected by the student’s anatomy ability and the item’s
difficulty level. If the student has a high level of anatomical
knowledge, the probability that he/she will answer the item 1
correctly is high. If an item has a low index of difficulty (i.e. a
hard item), the probability that the student will answer the item
correctly is low. IRT attempts to analyse these relationships
using student test scores plus factors ( parameters) such as item
difficulty, item discrimination, item fairness, guessing and other
student attributes such as gender or year of study. In an IRT
analysis, graphs are produced showing the relationship
between student ability and the probability of correct item
responses, as well as item maps depicting the calibrations of
student abilities with the above parameters. Also tables
showing ‘fit’ statistics for items and students, to be described
later.

A variety of forms of IRT have been introduced. If we wish
to look at the relationship between item difficulty and student
ability alone, we use the one-parameter logistic IRT (1PL). This
is called the Rasch model in honour of the Danish statistician
who promoted it in the 1960s. The Rasch model assesses the
probability that a student will answer an item correctly given
their conceptual ability and the item difficulty. Two-parameter
IRT (2PL) or three-parameter IRT (3PL) are also available
where further parameters such as item discrimination, item
difficulty, gender or year of study can be included. For the
purposes of this article, we are going to concentrate on 1PL or
Rasch modelling.

In Rasch modelling, the scores of students’ ability and the
values of item difficulty are standardised to make interpreta-
tion easier. After standardising the mean, student ability level is
set to 0 and the SD is set to 1. Similarly, the mean item difficulty
level is set to 0 and the SD is set to 1. Therefore, after
standardisation a student who receives a mean score of 0 has
an average ability for the items being assessed. With a score of
1.5, the student’s ability is 1.5, SDs above the mean. Similarly,
an item with a difficulty of 0 is considered an average item and
an item with a difficulty of 2 is considered to be a hard item.
In general, if a value of a given item is positive, that item is

difficult for that cohort of students and if the value is negative,
that item is easy (Nunnally & Bernstein 1994).

To standardise the student ability and item difficulty,
consider Table 10, presenting the simulated dichotomous
data for seven items on an anatomy test from seven students
showing the student ability for each student and the difficulty
level for each of the seven items. To calculate the ability of the
student, which is called 6, the natural logarithm of the ratio of
the fraction correct to the fraction incorrect (or 1 — fraction
correct) for each student is taken. For example, the ability of
student 2 (6,) is calculated as follows:

g =1n(-2) = 1n(— "L ) 6.6 = 0.80.
1—p 1071

This indicates that the ability of student 2 is 0.89 above the
mean SD. To calculate the difficulty level of each item which is

called b, the natural log of the ratio of the fraction incorrect
(or 1 — fraction correct) to the fraction correct for each item is
calculated. For example, the difficulty of item 2 is calculated as
follows:

by = 1n<1 ;P> = ln(l — 0'85> =1n0.176 = —1.73.

0.85

A value of —1.73 suggests that the item is relatively easy.
This standardisation process is carried out for all students and
all items and can easily be facilitated in an Excel spreadsheet
(Table 10).

We are now in a position to estimate the probability that a
student with a specific ability will correctly answer a question
with a specific item difficulty. For 1PL, the following equation
is used to estimate the probability:

1

P =1 69

Where p is the probability, 6 is the student ability and b the
item difficulty. Referring to Table 10, the ability of student 1 is
—0.28 SD below the average, and item 1, with a difficulty level
of —1.73, was answered correctly, which is below the average.
On the basis of the above formula, the probability that student
1 will answer item 1 correctly is [1/(1 + e (702817301 _ 12,
Considering student 3’s ability level and the difficulty of item 4,
the probability that the student will answer correctly item 3 is
(1/(1 4+ OO =[1/(1 4+ )] =0.50. This shows that if
the level of student ability and the level of item difficulty are
matched, the probability that the student will select the correct
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answer is 50%, which is equal to chance. The fundamental
aim of Rasch analysis is to create test items that match their
degree of difficulty with student ability. In simple terms,
the ‘cleverness’ of the students should be matched with
the ‘cleverness’ of the items. In order to further examine the
relationship between student ability and item difficulty, the
data in Table 11 shows the probability (p) that a student will
answer item 1, with item difficulty (&), correctly given their
ability (6) using data taken from Table 10 and using the
equation above.

[tem characteristic curves

In Rasch analysis, the relationship between item difficulty and
student ability is depicted graphically in an item characteristic
curve (ICC) shown in Figure 6.

In Figure 6, dotted lines are drawn to interpret the
characteristics of item 1. There is a 50% probability that

Table 11. Estimates of the probability of answering the correct

answer for item 1.

students with an ability of —1.85 will answer this question
correctly. This implies that student with lower ability have an
equal chance of answering this question correctly. In addition,
a student with an average ability (6 = 0) has an 80% chance of
giving a correct answer. The implication is that this question is
too easy. It should be noted that if an item shifts the curve to
the left along the theta axis, it will be an easy item and a hard
item will shift the curve to right. Examples of ICC curves for
items taken from an examination analysis shown in Figure 8
are displayed in Figure 7. Figure 7(a) shows a difficult question
(Question 101) and Figure 7(b) shows an easy question
(Question 3). Figure 7(c) shows the ‘perfect’ question
(Question 46) in which students of average ability have a
50% chance of giving the correct answer.

ltem-student maps

The distribution of students’ ability and the difficulty of each
item can also be presented on an Item—student map (ISM).
Using IRT software programmes such as Winsteps® (Linacre,
2011) item difficulty and student ability can be calculated and
displayed together. Figure 8 shows the ISM using data from a

Student b 0 o knowledge-based test. The map is split into two sides. The left
side indicates the ability of students whereas the right side
1 —-1.73 —-0.28 0.81 cors . . .
5 173 0.90 0.93 shows the difficulty of each item. The ability of each student is
3 -1.73 0.28 0.88 represented by ‘hash’ (#) and ‘dot’ (), items are shown by their
4 -1.73 0.28 0.88 item number. Item difficulty and student ability values are
5 —-1.73 —1.82 0.48 . . . .
5 173 0.28 088 transformed mathematically, using natural logarithms, into an
7 -1.73 -0.28 0.81 interval scale whose units of measurement are termed ‘logits’.
With a logit scale, differences between values can be quan-
tified and equal distances on the scale are of equal size
1.004
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Figure 6. ICC for item 1 from Table 10.
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(Bond & Fox 2007). Higher values on the scale imply both
greater item difficulty and greater student ability. The letters of
‘M, S and ‘T’ represents mean, one standard deviation and
two standard deviations of item difficulty and student ability,
respectively. The mean of item difficulty is set to 0. Therefore,
for example, items 40, 18 and 28 have an item difficulty of 0,
1, and —1 respectively. A student with an ability of 0 logits
has a 50% chance of answering items 46, 60 or 69 correctly.
The same student has a greater than 50% probability of
correctly answering items less difficult, for example items 28
and 62. In addition, the same student has a less than 50%
probability of correctly answering more difficult items such
items 64 and 119.

By looking at the ISM in Figure 8 we can now interpret the
properties of the test. First, the student distribution shows that
the ability of students is above the average, whereas more than
half of the items have difficulties below the average. Second,
the students on the upper left side are ‘cleverer’ than the items
on the lower right side meaning that the items were easy and
unchallenging. Third, most students are located opposite items
to which they are well matched on the upper right and there
are no students on the lower left side. However, items 101, 40,

@

05 4

Probability of answering correct

0.25

-9 -8 -T 4 5 4 -3 2 - ] 1 2 3 4
Student ability

(©)

86 and 29 are too difficult and beyond the ability of most
students.

Overall, in this example, the students are ‘cleverer’ than
most of the items. Many items in the lower right hand quadrant
are too easy and should be examined, modified or deleted
from the test. Similarly, some items are clearly too difficult. The
advantage of Rasch analysis is that it produces a variety of data
displays encapsulating both student and item characteristics
that enable test developers to improve the psychometric
properties of items. By matching items to student ability, we
can improve the authenticity and validity of items and develop
higher quality item banks, useful for the future of computer
adapted testing.

Conclusions

Objective tests as well as OSCE stations should be the
psychometrically sound instruments used for measuring the
proficiency of students and can be of use to medical educators
interested in the actual use of these examination tests in the
future. In this Guide, we tried to simply explain how to
interpret the outcomes of psychometric values in objective

(b)

]

Probability of answering correct
o

-9 -8 -7 £ -5 -4 -3 -2 -1 0 1 2 3 4 5 L g 8 9
Student ability

0.75 1

Probability of answering correct
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-
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Figure 7. Examples of the ICC.
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Figure 8. ISM; each '# represents four students and “.” represents one student.

test data. Examination tests should be standardised both
nationally and locally and we need to ensure about the
psychometric soundness of these tests. A normal question that
may be posed is to what extent our exam data measure the
student ability (to what extent the students have learned subject
matter). The interpretation of exam data using psychometric
methods is central to understand students’ competencies on a
subject matter and to identify students with low ability.
Furthermore, these methods can be employed for test validation
research. We would suggest medical teachers, especially who
are not trained in psychometric methods, practice these
methods on hypothetical data and then analyse their own real
exam data in order to improve the quality of exam data.
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Summary

This Guide has explained the interpretation of post-examina-
tion interpretation of objective test data. There are a number of
psychometric methods for determining the validity and
reliability of tests. CTT enables medical educators to detect
abnormal items on a test and to identify systematic errors that
may have influenced the student ability on a test. Factor
analysis allows medical educators to reduce the irrelevant
items, and to hypothesise relationships within items and
constructs (factors) associated with student competence. We
introduced CFA and structural equation modelling to test

hypotheses about the relationship between items and
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constructs (the underlying internal structure of the teso.
Although Cronbach’s alpha is traditionally used as an estimation
of the reliability of a test, it does not assess a combination of
source of measurement error that exists in observed scores of
students on a test. Using Generalisability study, medical
educators can show the exact position of error and then isolate
it in order to estimate variance in each source of measurement
error. SPSS is used for measuring sources of measurement errors
to calculate G-coefficient. One of the limitations of CTT is that it
does not provide the opportunity to measure how students of
different ability on a particular test perform on a particular item.
IRT using Rasch modelling can address the relationship
between the item ability and student ability from a set of the
student cohort. Using IRT, medical educators will be able to
evaluate the psychometric features of existing examination tests
and to remove anomalies in items. Using IRT will also employ to
develop item banking in which turn leads to CAT.
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writing of the article.
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