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Abstract

Background: Generalizability theory (G theory) is a statistical method to analyze the results of psychometric tests, such as tests

of performance like the Objective Structured Clinical Examination, written or computer-based knowledge tests, rating scales,

or self-assessment and personality tests. It is a generalization of classical reliability theory, which examines the relative contribution

of the primary variable of interest, the performance of subjects, compared to error variance. In G theory, various sources of error

contributing to the inaccuracy of measurement are explored. G theory is a valuable tool in judging the methodological quality of an

assessment method and improving its precision.

Aim: Starting from basic statistical principles, we gradually develop and explain the method. We introduce tools to perform

generalizability analysis, and illustrate the use of generalizability analysis with a series of common, practical examples in

educational practice.

Conclusion: We realize that statistics and mathematics can be either boring or fearsome to many physicians and educators,

yet we believe that some foundations are necessary for a better understanding of generalizability analysis. Consequently, we have

tried, wherever possible, to keep the use of equations to a minimum and to use a conversational and slightly ‘‘off-serious’’ style.

Introduction

Although we wrote this monograph primarily for Members

of the Association for Medical Education in Europe (AMEE),

it could be of interest to any serious medical educator, in fact,

any educator who is involved with the development and

administration of assessment procedures.

Society, appropriately, is concerned with the professional

competency of physicians, yet it lacks the prerequisite ability

to supervise it. Consequently, it has delegated the responsi-

bility for quality assurance to the professional colleges and

medical schools. These, in turn, have built up a veritable

‘‘assessment industry’’. But, who assesses the assessment?

Thus, we have all gradually become increasingly conscious

of the need for quality assurance of high stakes assessment.

One of the most powerful tools to explore the value of

methods to evaluate knowledge, skills and, possibly, attitudes,

is generalizability theory or as it is more commonly known,

G theory.

Yet, for many of us, G theory is still a black art. Basically,

it (G theory) explores the fundamental question: to what

extent can we extrapolate the results achieved on a limited

sample of test tasks, measured under unique test conditions to

a universe of tasks and conditions, from which the specific test

set has been drawn more or less arbitrarily.

The literature on G theory is no easy fare, nor do tools

for G theory data processing abound. Some four years ago,

we started to develop a computer program – G_String – to

give evaluation practitioners a tool to analyze their data

using G theory. G_String wraps around a command line

program, performing the core calculations, called urGENOVA

(University of Iowa), written by Robert L. Brennan, one of the

leading experts in the field. The name of our software,

‘‘G_String’’, has raised more than one eyebrow and academic

firewall concerned with propriety. In fact, the semantics are

quite innocent: ‘‘G’’ stands for generalizability, and ‘‘Strings’’

are lexical sequences of symbols (letters) which the program

Practice points

. Testing knowledge and performance is a measurement.

. Measurements provide a mixture of true data (signal)

and confounders (noise).

. Statistical methods like G theory allow us to separate

noise from signal, identify sources of noise, and devise

ways to reduce their contribution to the final results.

. G theory is a powerful method to achieve this goal.

. G theory is an extension of the two-factor, random-

model ANOVA.

. G theory, like any analytical tool, is only useful if it is

accompanied by careful experimental design, planning,

and analysis.
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parses and analyses in order to instruct urGENOVA on how

to perform its calculations and what to do with the results

of these calculations. G_String is freely available and can be

downloaded free from: http://fhsperd.mcmaster.ca/g_string/

index.html at McMaster University.

G_String is not the only computer program of its kind.

Others are available as well, but it is the program we know

best. This is why we have used it as the backbone in this

monograph.

We are not attempting to turn you, the reader, into a hard

core statistician. Rather, we provide an overview of the theory

underlying G theory analysis. For those of you who want to

know more, there are books that offer a relatively painless

introduction to statistics (Streiner & Norman 2008a). For the

more serious among the readers are typical classics (Winer

et al. 1991). For those, who live on the web, there is a

wonderful Statistics portal by NIST (National Institute of

Standards and Technology 2003). Finally, for the more

pragmatic amongst the readers, almost any technical term is

explained in Wikipedia and can be easily found on Google

(www.google.com).

In ‘‘Signal and noise’’ section, we introduce the concept

of statistical noise as well as ‘‘signal-to-noise ratio’’. ‘‘Two-way

ANOVA’’ section provides an example of a classical analysis of

reliability using simple two-way analysis of variance (ANOVA).

In these first two sections, we emphasize a mathematical

approach. While the reader does not necessarily have to

trudge through the formulae in order to be able to apply the

topics of subsequent sections, it would surely add to a deeper

understanding as it demonstrates how generalizability theory is

an extension of classical test theory (CTT) using mathematical

statistics.

In ‘‘Beyond CTT’’ section, we take a more detailed look

at sources of experimental noise and extend the theory to

multiple factors. We also introduce the basic terminology of G

theory. We abandon the formal mathematical derivation at this

point, and refer the interested reader to appropriate sources.

In ‘‘Research design’’ section, we demonstrate how these

concepts mesh with research design in evaluation. ‘‘Designing

your G study’’ provides a general approach to designing G

studies, i.e., studies to analyze the properties of a given

test. ‘‘Computing G coefficients’’ section explains how G

coefficients are calculated. This is not essential; G_String

performs these calculations, but it may help achieve better

understanding of how the coefficients have been calculated by

the software. ‘‘G theory software’’ section discusses the

available G theory software and explains G_String in more

detail. ‘‘Worked example’’ section provides a medley of

worked examples to illustrate the possibilities.

We have specifically added Appendices A–D which focus

entirely on the use of G_String. Appendix A illustrates how one

goes about analyzing a dataset with G_String. Appendix B is

more technical, it describes the data requirements of G_String.

Appendix C explains the program output and how to interpret

it. Appendix D, finally, lists possible error messages of

G_String and explains their significance.

Since it is easily downloadable and free, we would

recommend that G_String is used at the same time as reading

and using this Guide.

Signal and noise

Outline

. Why G theory?

. The basic idea of signal and noise

. Ratio of S/(SþN)

Why G theory?

You are sitting across the table from the Minister of Health

and her coterie (a small exclusive group of people who share

the same interests). She seems rather tense. No wonder,

she has been getting a lot of criticism lately for the poor quality

of health care services. She is looking for a quick and media-

effective way out. And you, lucky fellow, you are it.

‘‘It’s the low quality of our doctors’’ says she. ‘‘We have

to introduce better quality control!’’ With your political

knowledge you inquire: ‘‘What did you have in mind?’’ She

snuffs and replies: ‘‘Don’t you see, half the physicians provide

below average care? We have to stop this!’’

There is your mission. How do you determine quality of

care, and how do you remove physicians who are lacking?

While quality-of-care indicators for specific conditions exist,

it is neither practical nor economically feasible to accurately

monitor the overall quality of care for every physician; and

using such indicators in a coercive manner would be politically

out of the question. We are thus left with assessing future

physicians at the transition from education to training and

from training to practice. In a limited way it may be possible to

identify low-end-outliers and, hopefully, prevent them from

entering practice.

Assessing the qualities of future physicians remains a

substitute for controlling actual quality of care. The challenge,

thus, becomes finding appropriate and cost-effective mea-

sures, applying them efficiently, and demonstrating that they

adequately measure competence, and predict future quality

of care. But that raises another conundrum: can physician

competence be measured on a single scale, or does it rather

consist of a basket of individual, independent competencies

which are required in differing proportions for different

specialties and practice conditions? Finally, if competence

cannot be reduced to a single scale, how do you define a

threshold below which progression toward independent

practice becomes impossible?

Ideally, we could plug candidates into a calibrated black

box that provides us with a digital readout of their compe-

tence. If it had a chute for rejects, we would not even have

to pick up the pieces. But, of course it just is not that simple.

A battery of multiple choice questions may be adequate

for testing factual knowledge and maybe some reasoning, but

it does not suffice for testing professional skills which,

unfortunately, constitute a major portion of physician compe-

tence. Skills manifest themselves as purposeful behaviors

appropriate to specific circumstances, and need to be judged

by a knowledgeable observer.

The magnitude of the skills inventory required for the

practice of medicine makes comprehensive testing impossible.

Practical and economic considerations severely limit the

Generalizability theory for the perplexed
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sample size of requisite skills that can be tested in an exam.

Thus, from the outset a clinical skills examination can only

provide a crude estimate of a candidate’s skill level. The

smaller the test set the cruder the estimate. Since the skills

score requires human judgment, extraneous factors will affect

the result. One of the authors’ centenarian mother reminisces

that she made it a habit to always wear a short red dress for

oral exams; she knew about observer subjectivity!

For any large test involving many candidates and many test

situations (cases, stations, orals), different candidates may

meet different raters and different standardized patients even

if efforts are made to control the clinical case presentation.

There are multiple sources of variability. We have already

mentioned that ‘‘medical competence’’ does not fit on a

simple, one-dimensional scale, but takes on different values,

depending on the specific skill and situation under which it is

estimated. There are other sources of error. A candidate may

function better on one day than another; she may do better

in the morning than in the afternoon. There are also some

structural considerations. Maybe you are testing candidates

from different schools. True, your primary interest is the

competence of individual candidates, but you may also be

interested in the teaching effectiveness of the individual

schools – yet another source of variability. And so it goes.

It is the bane of social sciences that potential sources of

variability are almost unlimited. You are dealing with obser-

vational data, so randomizing extraneous sources of statistical

variability is all but impossible.

And there lies the power of generalizability theory; it allows

you to estimate the contributions of different sources of

variance, as long as you can group your individual measure-

ments appropriately, and you are able to estimate all individual

data items on an identical numerical scale. The variability of

primary interest to you is the differences in estimated

competence between the different candidates – we call this

‘‘the signal’’. Any other source of variability constitutes

statistical ‘‘noise’’. In designing and refining your testing

procedure, you pay attention to the various sources of noise

in order to minimize them.

The basic idea of signal and noise

The related concepts of signal and noise arose originally

during the development of RADAR in WW II Britain. Signal

was what you were interested in; it meant ‘‘enemy aircraft

approaching’’. Noise meant distraction; it might have masked

a true signal or falsely sent Royal Air Force fighters on a wild

Messerschmitt chase. With the progress of signal theory, this

qualitative approach was soon replaced by much more

quantitative and mathematical methods.

But signal theory is just the special case where statistics

is applied to time series – commonly of continuous electrical

voltage or current. Thus it appears quite natural that such

descriptive terms like ‘‘signal’’ and ‘‘noise’’ became general-

ized. However, instead of defining ‘‘signal’’ as the total

presence or absence of signal amplitude, it became focused

on a defined change in signal amplitude. Before we can

visualize ‘‘signal-to-noise’’, we have to familiarize ourselves

more quantitatively with the nature of noise.

You may be a statistical maven, or like the rest of us,

you might, at times, become confused by the apparent leaps of

faith, statisticians employ. Much of this confusion stems

from the fact that statistics really consists of two distinct

concepts in one wrapper. First, statistics deals with concrete,

real, finite data items, the kind of data items you collect and

explore in your daily work. Statistics tells you how to

manipulate these data. The second concept – much more

abstract – deals with idealized, infinite datasets. What ties those

two concepts together is a theory of how you infer properties

of the infinite set from the finite data items.

Let us assume for the moment that we always employ

the same limited test set for our competence exam: the 10 most

common clinical situations. In this case, test results do not

allow us to generalize to the general competence level of

candidates; only that they can handle the 10 most common

clinical situations. If we want to be able to generalize to a

larger universe of clinical skills, we have to draw our test set

randomly from that universe. But to do so, we have to have

some way of estimating the extent to which the specific

characteristics of the small set of 10 situations may lead to error

in the generalization. To return to our first example, the extent

to which the specific rater, standardized patient, or case may

lead to a biased estimate, or the effect of the time of day, the

school where they are being tested, or any number of other

variables.

Maybe we have got ahead of ourselves. We need to begin

by quantitatively examining the issue of measurement errors in

a simpler situation. Let us start over with just about the simplest

example possible: here is a string and a ruler. Your task is to

measure the length of the string. We will assume that you are

lucky, you own the absolutely accurate reference ruler that

sets the standard for all the other rulers in the world. You

realize that a string is an iffy thing. Its length depends, among

others, on the tension applied. So, you standardize that by

clamping at a uniform tension. Done! Your ruler shows the

string to be 101.0 mm long. But your buddy tries the ruler and

gets 100.5 mm. Clearly, a single measurement does not mean

much, no matter how careful you are.1 There still remain any

number of factors that might affect your final result, which you

have not taken into consideration. You may want to standard-

ize temperature and humidity, yet still, repeated measurements

result in a range of numbers. There is no way around it, you

have to repeat the measurement process a number of times –

say ‘‘N ’’ times.

The finite, concrete dataset consists of the results of your

repeated measurements. The idealized, infinite dataset consists

of a continuum of possible true length values of the string.

The problem is you really do not know the string’s true length.

A central tenet of statistics postulates that you will get the

‘‘true’’ value only if you measure the object (string) an infinite

number of times. Problem is, that may take you forever, and

you have better things to do.

We have been holding back as long as we could, but we

just have to introduce some mathematics.

Consider the formula:

Xi ¼ �þ "i with i ¼ 1, . . . , N ,

R. Bloch & G. Norman
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where Xi stands for the concrete ith measurement of string

length, lower case � stands for the unknown, true value,

a specific choice from the idealized, infinite set of possible

values, and the unknown ith error term "i has been drawn

from the idealized, infinite universe error set. Statisticians tend

to use capital letters for finite sets and lower case letters for

infinite sets. If your measurement errors are truly random, the

mean of the error terms tends toward zero as the number N

of repeated measurements grows. As a result, the mean value

of Xi, namely

�h i ¼ �X ¼
1

n

XN
i¼1

Xi

will tend toward the elusive ‘‘true’’ value � with growing N.

But what do we mean by ‘‘tend toward?’’ It means, on average,

the absolute difference between the true value and the mean

of measured values will get smaller and smaller, but cannot

ever be expected to become zero for any finite number of N.

In other words, it is the best estimate for the true value of �

under a given number of repeated measurements. Statisticians

will say: the mean is the best, unbiased estimator of the true

value.

Now let us look at the error terms. For each measurement

Xi , the error term is just "ih i ¼ Xi � �X , where the pointed

brackets indicate ‘‘estimator.’’ But the individual "i estimates

do not interest us. We need some kind of aggregate for the

error terms. As we have seen above, the estimate of the mean

error term is zero, because the error terms are assumed to have

a symmetrical distribution around the mean.

To stop the positives and negatives canceling each other,

we estimate the squared error (variance) by calculating the

mean-squared error of our measurements:

"2
i

� �
¼

1

N � 1

XN
i¼1

Xi � �X
� �2

¼

PN
i¼1 X2

i �N � �X2

N � 1

�
SS

df
� MS Xð Þ � varðXÞ � �2:

Assuming a normal distribution for the individual

length measurements, MS is an unbiased estimate for "2 or

variance. ‘‘SS’’ stands for ‘‘sum of squares’’, ‘‘MS’’ for ‘‘mean

square (difference)’’ and ‘‘df’’(equal to N� 1 in this case) for

‘‘degrees of freedom’’ and var(X) is the variance of X. In ‘‘two-

way ANOVA’’ section, we will employ this terminology again.

Let us say a word about the term ‘‘degrees of freedom’’.

There are various formal definitions in the literature. The

simplest one found in the Wikipedia is: ‘‘the number of values

in the final calculation of a statistic that are free to vary’’.

In our case, we have N measured values for Xi. But the

estimated value of � is already fixed. In other words, it is the

best estimate for the true value of �. So you only have N � 1

values left to vary, that is: df ¼ N � 1.

If we are attempting to detect a specific, consistent change

in the variable X, namely �X , we can define the so-called

‘‘effect size’’ ES as

ES ¼
�X

�
:

As a carryover from signal theory, it is common to consider

the power ratio or the square of the effect size and call it

‘‘signal-to-noise ratio’’ or SNR:

e2 ¼
�X2

X2
i �

�X2
�

�X2

�2
� SNR:

Another common indicator for the quality of a measurement

is the so-called ‘‘intra-class correlation’’ (ICC) (Fisher 1925):

ICC ¼
SNR

1þ SNR
:

It is the ratio of the variance attributed to the variable

of interest to the total variance, so expresses the proportion

in the variance of the observed scores that is due to true

differences in the variable of interest.

Before we put this section to bed, let us consider the

RADAR example once more. The larger the signal relative

to the noise, or alternatively, the larger the proportion of the

total amplitude that is due to signal, the better your chances of

finding the bad guys. So this means that the closer the ICC is

to 1, the better the ability to detect the signal. An ICC of 1 says

that it is all signal; you have managed to create a perfect,

noiseless detection system. An ICC of 0 says, conversely that

you are unable to find any signal.

We conclude ‘‘Signal and noise’’ section by summarizing

the terms used in estimating the mean and variance of a

random variable:

Term used Symbol Formula
Example

string (N¼ 10)

Mean �X
1

N

XN
i¼1

Xi 10.01 cm

Sum of squares SS
PN
i¼1

X2
i �N � �X2 ¼ 0.09 cm2

Mean square (variance) MS
SS

df

Degrees of freedom df N � 1

Signal-to-noise ratio SNR
�X2

X2
i �

�X2

Intra-class correlation

coefficient

ICC
SNR

1þ SNR

Summary

In this section, we have introduced the scope of G theory as

a tool to examine a variety of confounders in the systematic

assessment of knowledge and competence. We have also laid

a basis for quantitative understanding of signal and noise

contained in empiric data.

Two-way ANOVA

Outline

. The simple linear model

. Two way ANOVA

. How to compute

. Numeric example

Now that we have conquered some fundamental statistical

principles and measuring the length of a string bears no horror

anymore, we can graduate to a simple multiple choice test.

Things are kind of the same, but different from ‘‘signal and

Generalizability theory for the perplexed
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noise’’ section. This section, at first glance may be still a bit

mathematically loaded, but it is not our purpose to turn

you into an expert statistician. Rather, we are trying to illustrate

the lineage of G theory, so you can more easily appreciate its

strengths and limitations.

It is self-evident that easy tests result in higher scores than

difficult tests, and competent students receive higher scores

than incompetent ones. The nice thing about self-evident

truths is that we can hang on to them, no matter what.

However, it is not quite clear how test easiness and student

competence interact. The simplest assumption is that they act

additively. Let us try that and see what we get. We expect,

therefore, that the test score of student ‘‘i ’’ on test item ‘‘k’’

looks somewhat like:

Expected scorei,k ¼ grand meanþ competencei

þ easinessk þ fudge factori,k:

The reason that we need a fudge factor is twofold. Firstly,

we have already mentioned that we have made the assump-

tion of additivity somewhat arbitrarily. It is quite likely that

some interaction between specific test questions and specific

students exists. Secondly, we have lost all kinds of additional

information: the fly that buzzed around student ‘‘i ’’ while he

was dealing with item ‘‘k’’. And there are many other potential

sources of noise, too numerous to mention.

Unfortunately, no self-respecting journal would accept

an article containing fudge factors. Let us, therefore, make

the above formula more scientifically respectable by renaming

‘‘fudge factor’’ to ‘‘error term’’ ".

esi,k ¼ �þ ci þ ek þ "i,k:

There you have it. Does not that look scientific? Instead

of having just a single factor, the string length as in ‘‘signal and

noise’’ section, we now have two: competence (the factor we

are really interested in) and easiness. Our task thus becomes

to solve a whole swatch of similar linear equations:

Xi,k ¼ �h i þ cih i þ heii þ h"i,ki,

where Xi,k are the actual scores.

Solving hundreds of simultaneous equations – child’s play!

h�i ¼
1

Ns �Nf

XNs

i¼1

XNf

k¼1

Xi: � �X � X::,

hcii ¼
1

Nf

�
XNf

k¼1

Xi,k � �X � Xi: �X::,

heki ¼
1

Ns

XNs

i¼1

Xi,k � �X � X:k �X::,

where Ns and Nf stand for the number of students and test

items, respectively. Now that we have unbiased estimates

for the grand mean, for competences, and for easiness, our

task is almost completed. The only thing left is this pesky

problem of noise.

As in ‘‘signal and noise’’ section, we are not really interested

in calculating the individual error term for each measured

score. Rather, we want to calculate a compound measure of

errors attributable to the two sources of error: students and

questions. We will first calculate the total sum of squares:

SStotal ¼
XNs

i¼1

XNf

k¼1

Xi,k �X::

� �2
¼
XNs

i¼1

XNf

k¼1

X2
i,k �Ns �Nf �X2

:: :

For the sum of squares attributable to students we get:

SS sð Þ ¼ Nf �
XNs

i¼1

Xi: �X::ð Þ
2
¼ Nf �

XNs

i¼1

X2
i: �Ns �X2

::

( )
:

The factor Nf looks confusing at first. But remember,

we actually have to perform the sum over all the scores, so we

do need Ns �Nf terms. Similarly, for the sum of squares

attributable to the questions, we get:

SS fð Þ ¼ Ns �
XNf

k¼1

X:k �X::ð Þ
2
¼ Ns �

XNf

k¼1

X2
:k �Nf �X2

::

( )
:

Since the error sum of squares is equal to the individual

error sums for students plus that of the questions plus the

residual error, we can calculate the residual error sum as

SSðerrorÞ ¼ SStotal � SSðsÞ � SSð f Þ:

Getting the mean squares is almost trivial in comparison:

MSðsÞ ¼
SSðsÞ

Ns � 1

MSð f Þ ¼
SSð f Þ

Nf � 1

MSðerrorÞ ¼
SSðerrorÞ

ðNs � 1Þ � ðNf � 1Þ

We are almost home. Just take a deep breath! Remember, in

the ‘‘signal and noise’’ section the variance of string length was

simply equal MS (length). But here we have two factors –

students and questions, so we have to do a ‘‘Two way

ANOVA.’’ Estimating the variance components �2ðsÞ, �2ð f Þ,

and �2ðresidualÞ is not computationally difficult.

While the MS(error) gives us the estimate for the variance

component due to residual error, the other two mean squares

are slightly more complicated. For example, MS(s) contains

not only the variance inherent in the differing competence

of students (once for each form) but also the actual error or

residual variance.

MSðerrorÞ ¼ �2ðresidualÞ,

MSðd Þ ¼ �2ðresidualÞ þNf � �
2ðsÞ,

MSð f Þ ¼ �2ðresidualÞ þNs � �
2ð f Þ:

We have finally arrived. We can now calculate estimates for

the different variance components:

�2ðresidualÞ ¼ MSðerrorÞ,

�2ðsÞ ¼
MSðsÞ �MSðerrorÞ

Nf

:

�2ð f Þ ¼
MS fð Þ �MSðerrorÞ

Ns

:

Knowing the estimated variance components is nice. But

what do you do with it? The variance component attributable

to the exam questions does not interest us too much at

this point. What we would like to know is: how much of the

observed variance of students’ competence is due to their

R. Bloch & G. Norman
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actual competence, and how much is due to measurement

error? Easy:

�2 ¼
�2ðsÞ

�2ðsÞ þ �2ðresidualÞ
�

MSðsÞ �MSðerrorÞ

MSðsÞ þ Nf � 1
� �

�MSðerrorÞ
:

The variable �2, sometimes called E�2 or ‘‘ICC’’ is a

dimensionless number between 0.0 and 1.0. An ICC of 0 is

bad, very bad. It gives us nothing but noise. An ICC of 1.0

is good, very good. You have reached the Nirvana of an

error free test. Please call the authors immediately and tell us

how you did it. Anything between those limits is realistic.

For high stake exams, you would like ICC to be well over 0.8.

For formative evaluation, values of 0.6–0.7 are more typical.

The ICC is closely related to the SNR mentioned earlier:

�2 ¼
SNR

SNR þ 1
:

To give more realism to the (synthetic) multiple choice test,

we will illustrate how the numerical results could look like in

more detail:

Effect N df Mean SS MS �2

Total 600 1 72.3 4189971.06

Student 60 59 0 2348974.08 39813.12 4328.64

Form 10 9 0 1386800.82 154088.98 2597.18

Residual 531 0 454196.16 855.36 855.36

The ICC is then 4328/(4328þ 855)¼ 0.835. The value is

actually quite reasonable. Only 16.5% of the observed variance

of student scores is due to error.

For this fully balanced, crossed design with one facet, the

reliability coefficient tells you all you need to know. The two-

way ANOVA is a powerful tool to calculate the variance

components attributable to students, questions, and residual

error, and to determine reliability as ICC.

But in the real world, there may be many more facets.

G theory provides you with a generalized tool to estimate

variance components under a variety of experimental condi-

tions. Systematically analyzing the variance contribution of

various facets allows you to optimize your assessment tool.

Think of G theory as reliability on steroids, but more about that

in ‘‘Beyond CTT’’ section.

Summary

In this section, we have expanded the discussion of signal and

noise, and introduced a fundamental statistical technique: the

two-factor random-model ANOVA.

Beyond CTT

Outline

. Classical test theory

. What is wrong with classical test theory

. Basic concepts

� The ‘‘Object of measurement’’

� Facets of generalization

� Stratification facets

The example we have used to date, looking at how 60 students

performed in a simple multiple choice test involving 10 ques-

tions, yielding 600 numbers, was our first foray into the arcane

discipline called ‘‘psychometrics’’. We calculated an ICC,

which represented the proportion of the total variance in the

numbers that was due to real differences between students.

This is called a ‘‘reliability coefficient’’ and measures the ability

of the measuring instrument, the multiple choice test, to dis-

criminate between high and low scoring students. To remind

you of the formula:

ICC ¼
varðstudentsÞ

varðstudentsÞ þ varðerrorÞ
:

Note a few properties of this ratio. First, as we mentioned

in ‘‘two-way ANOVA’’ section, it is a number between 0 and 1,

with 0 indicating that all the variability in scores is due to error

or noise alone, and 1 indicating that all the variability is due

to real differences between students. But note that the signal is

not simply a number; it is actually a variance, measuring how

much difference arose between high and low scoring students.

If there is no difference between students – everyone got

9/10 – then the reliability is zero, by definition. So reliability

is not the same as agreement, since if everyone gets 9/10 there

is 100% agreement. Instead it is a measure of discrimination –

in the technical, not sociological, sense; the ability of the

instrument to distinguish between high and low scorers.

One consequence of this formula is that the more homoge-

neous the sample (and population) the lower the reliability, all

other things being equal. So that reliability is only meaningful

when you specify the variance of the population you are

applying it to.

Now let us talk a bit more about the denominator. As we

have seen, it is made up of two variances – variance due to

differences among students, also called true variance and

a second term that we have called ‘‘error’’. Actually it is a bit

more complicated than that. There are two contributors to the

error term; the ‘‘item� student’’ interaction – the extent to

which some students do well on some items and poorly on

others, and others get different items right or wrong, and also

random error – what might result if we gave exactly the same

items to the students again (assuming they cannot remember

their prior response). In fact, because we only have one

observation in the individual cell defined by each student and

each item we cannot separate the two terms. So as a general

rule, we always consider that the highest order interaction

is the same as the random error term.

There is also potentially a third source of error – systematic

differences between items. This would show up in the analysis

as the ‘‘main effect’’ of item and had a variance of 2597

in the previous example. However, in the circumstances we

described, where all 60 students got the same test questions,

in fact this may be of no particular consequence. If it turned

out that some of the questions were a bit harder, then it just

means that the overall test score was a bit lower, but each

student’s score relative to the 59 other students would be the

same. On the other hand, if we were administering the test on

different days and wanted to make sure the students did not

pass the answers along, we might want to get a new set

of questions for the second day. If we did that, the extent to
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which the overall difficulty of the test changed from day-to-day

(the main effect of item) would be a source of error and would

have to be considered in the reliability. If it did, we would be

interpreting each student’s score in an absolute sense. These

ideas of relative and absolute errors arise again when we get to

G theory, but are fairly easy to comprehend in this simple

example.

This approach to reliability is commonly called ‘‘CTT’’ and

has roots back to a famous book by Fisher (1925), called

‘‘Statistical Methods for Research Workers’’. Chapter 8 is titled

‘‘The Intra-class Correlation Coefficient’’. However, the basic

ideas predate the book by a quarter of a century, back to

Pearson (1896). The fundamental idea, leading up to the

reliability coefficient, is that every score contains two elements,

a true score and an error score. From this it follows that the

reliability is just true score variance over total score variance,

as we showed above.

What is wrong with classical test theory?

Let us go back to our example of the competence test.

The performance on each task is determined by a number of

factors:

Candidate factors

. knowledge;

. technical skills;

. social skills;

. intelligence; and

. charisma.

Task factors

. required knowledge;

. required technical skills;

. required social skills;

. required problem solving skills; and

. personality of standardized patient.

Rating factors

. rater expertise;

. rater severity.

Situational factors

. time of day;

. environment.

True random factor

We could go on and on. In short, there is not just one error

affecting a score; there is a whole bunch of possible errors.

The trouble with CTT is that it is based on this very simple

idea that any measurement has just two parts – true variance

and error variance. But as we have just shown, there are

multiple sources of error – some may be big and some may be

small. But in CTT, we can only deal with them one at a time. So

if we want to look at the effect of raters, we get different raters

to score a bunch of tests and we compute inter-rater reliability.

Or we could get the same rater to do it again, so we have two

times, and calculate intra-rater reliability (note – and a different

one for each rater, since we cannot combine raters and times).

We might have a number of items on the test, and so we would

calculate an internal consistency (reliability across items). And

on it goes. The trouble is that we end up with a bunch of

numbers between 0 and 1, but that is not really what we need.

What we want to know is what are the big sources of error, so

that we can get a lot of samples of them, and what are the little

sources that we do not have to worry about. But since every

study will typically use a different sample, with different raters

and so on, we have no easy way to compare one to another.

What we really want to do is put all the sources of variance

into one big analysis so that we can see what is introducing

a lot of error and what is not, and run one big ANOVA that

systematically computes all the error variances. We can then,

if we are cunningly clever, determine different intra-class

coefficients corresponding to inter-rater, test–retest, internal

consistency, etc. And that is what G theory does (Cronbach

et al. 1963).

However, in order to break the shackles of CTT, G theory

begins with a new terminology reflecting, at its core, a new

way to view the world of measurement. So here we go:

Basic concepts

The object of measurement (facet of differentiation). Most

measurement situations are like our example, where we are

attempting to see how well a particular instrument can

differentiate between people – students, patients, or teachers.

So our ‘‘object of measurement’’ – the thing we will ultimately

attach a number to – is a person. As a result, most textbooks

(Shavelson & Webb 1991; Brennan 2001) refer to any variance

associated with the object of measurement as ‘‘person’’

variance.

However, some caution is necessary. If we have people

rating hamburgers or wines, patients rating the food on the

ward, or students rating textbooks, the object of measurement

is actually the hamburger, the ward, or the book. So in these

situations, ‘‘persons’’ can be books or hamburgers.2 Also, the

same design may yield different ‘‘objects of measurement’’

(Allal & Cardinet 1976). So, for example, we may be getting a

group of patients to rate the seriousness of various health

states. If we are interested in obtaining a number for each state,

then the object of measurement is the written health state and

the patient is a rater of the state. On the other hand, perhaps

we are interested in the individual’s optimism or pessimism

about health in general. In that case, the patient is the object

of measurement and the written health state is an item.

To remind researchers that the object of measurement is

not fixed, and not necessarily human, but rather is the thing we

want to ultimately be able to distinguish, Streiner and Norman

(2008b) used a different terminology. They call this the ‘‘facet

of differentiation.

Facets of generalization. G theory was developed by

Cronbach et al. in a book published in 1972. A starting point

was the recognition that the ‘‘true’’ score, derived from a

hypothetical population (as we described in ‘‘signal and noise’’

section) was never observable and could only be approxi-

mated as the average across all the observations. So instead of

clinging to this concept, G theory begins by defining a finite
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‘‘universe’’ consisting of observations across all the possible

levels of all the factors the researcher is interested in. For

example, if we were interested in estimating the contribution

of raters, occasions, and cases to a measurement of commu-

nication skills, we define our universe in terms of a number

of levels of rater, case, and occasion. So the ‘‘universe’’ score

is the average score of an individual across all levels of all the

factors in this specified finite universe.

We have been calling them ‘‘factors’’, but the accepted term

in G theory is ‘‘facet’’. That is, in our study above, there are

three obvious facets – rater, case, and occasion. However,

although the terminology changes and the approach are much

more versatile than CTT, it does retain some of the common

features. In particular, we will still be calculating various ICCs,

which are ratios of variances. And they have the same form

as the traditional ICC, with the numerator representing the

variance of interest (the ‘‘true’’ variance) and the denominator

representing the sum of variance of interest and error variance.

Not surprisingly, if we do a G study with only one facet – say,

raters – the resulting G coefficient is just what would come

out of the classical inter-rater reliability analysis described

in ‘‘two-way ANOVA’’ section. And the interpretation is the

same – a number between 0 and 1 representing the proportion

of the total variance in the observations due to differences

between the things we are trying to measure – the facet of

interest. Like the classical coefficient, it is an index of the ability

of the instrument to discriminate or differentiate between the

things we are trying to measure

As we have already seen, in contrast to CTT, G theory

allows for multiple sources of variance, which Cronbach calls

the ‘‘facets of generalization’’. These are the facets that we

want to generalize over (obviously). But this too requires a

change in language:

. instead of saying, ‘‘What is the inter-rater reliability of this

exam?’’ we say, ‘‘To what extent can we generalize these

exam scores across raters?’’;

. and test–retest reliability becomes ‘‘To what extent can we

generalize these scores across occasions?’’;

. and then a new one pops up, ‘‘To what extent can we

generalize these scores across both occasions and raters?’’

which is sort of a test–retest inter-rater reliability.

But here is where G theory acquires its additional power.

We are no longer constrained to the traditional variables like

rater or time. Instead every measurement situation should be

examined de novo by beginning with the question, ‘‘What are

the most likely sources of error in this particular measurement

situation?’’ If we do this, we are led into considering all sorts

of variables (facets) that are not part of the usual lexicon,

like cases and formats. Second, once these have been defined,

we have essentially defined our finite ‘‘universe’’ of observa-

tions, and can determine the contribution of each facet to

error, as well as the overall ability to differentiate objects across

all levels of the universe.

How do we distinguish between those facets we want

to generalize over (raters, in the case of inter-rater reliability)

and those that we wish to hold constant (occasions, in this

example)? This awaits the calculations, but for the moment, it is

important to note that these have different labels. The facet we

wish to generalize over is called a ‘‘random facet of general-

ization’’, signifying that we want to look at generalizing to

some random, other level; the other facet(s) are called ‘‘fixed

facets of generalization’’ – we hold them fixed. We will see

in due course how these are dealt with in detail, but the basic

idea is that fixed facets contribute to the variance of interest

(true variance) and random facets contribute to the error

variance. Logically, it is as if the fixed facets replicate the

conditions of the original study and the random facets are a

sample of a ‘‘universe’’ of possible allowed conditions.

Streiner and Norman (2008b) regrettably use a different

terminology. In fact, they use the same terminology for

different purposes. In their lexicon, a ‘‘fixed facet of general-

ization,’’ as defined above, is a ‘‘fixed facet’’, and a ‘‘random

facet of generalization’’ as above is just a ‘‘facet of generali-

zation.’’ That is, for an inter-rater reliability study, you would

keep ‘‘item’’ as a fixed facet, and rater would be a facet

of generalization. To make matters worse, they reuse the

concept of fixed and random in another context, as discussed

in the ‘‘Research Design’’ section.

Stratification facets. Now if you look in the textbooks on

G theory, you will see that this is all there is. However, as we

developed G_ String, we found that a very common situation

in medical education is not adequately represented by this

three – level world view. Imagine, for the moment, that the

60 students in our multiple choice test actually come from two

classes, with different teachers. Students 1–35 are taught by

Dr A; 36–60 by Dr B. As it turns out A is a much better teacher,

so on average the first 35 students do a lot better than the

other 25. We really have another facet in the design, call it

‘‘classroom’’.

What kind of facet is it? Not a facet of generalization –

clearly we are not trying to generalize from a student’s

performance in one class to her performance in the other one,

since she can only be in one class. But somehow it matters,

since the first 35 students are getting a score which is biased

upwards compared to the last 25.

It really is a different kind of facet altogether, which we can

identify by analogy. In designing experiments, we often

sample students in different strata – gender, educational

level, classroom, and school. We are doing the same thing

here, although the intended use differs, but consistent with the

analogy, we will describe these as ‘‘stratification facets’’.

Again, the specific approach to dealing with stratification

variance will be dealt with later.

Summary

In this section, we have reviewed some basic concepts about

CTT, pointed out its weaknesses, and begun to show how G

theory deals with these problems. The essential difference is

that, instead of simply dividing an observed score into true

score and error, G theory explicitly identifies multiple sources

of error (facets). Facets are of two kinds – the facets of

generalization (errors) and stratification facets (strata or

groups).

Generalizability theory for the perplexed
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Research design

Outline

. G study research designs

. G coefficients – General form

. Constructing G coefficients

� Absolute vs. relative error

. D studies – G coefficients for multiple levels

G study research designs

We have talked a lot about G theory and its relation to variance

components – at least at a conceptual level. It is now time

to get a bit more practical. In ‘‘two-way ANOVA’’ section, we

showed how to compute true and error variances for a simple

CTT design; what we might call in G theory a ‘‘one facet’’

design, referring to the single facet of generalization. As you

recall, we used repeated measures ANOVA, with a single

repeated ‘‘within-subject’’ factor. In G theory, we take the

same basic approach, but extend it by introducing additional

repeated measures in the design.

Let us go back to the assessment of communication skills.

We will do it as many people do, by creating an Objective

Structured Clinical Examination (OSCE), where the student

goes from room to room interviewing standardized patients,

moving on every 10 min or so. And when she leaves the room

that standardized patient completes some kind of communi-

cation skills rating. Let us say we have 10 stations. If that is all

there was, we could treat the whole thing as a simple reliability

study and use CTT, as we did in ‘‘two-way ANOVA’’ section.

We would have 10 repeated observations on each student, and

we would set it up as a one-factor repeated measure ANOVA.

But let us recast the whole thing as a G study. To begin

with, the object of measurement is straightforward – student.

That is, after all is said and done, we are interested in seeing

how well the test differentiates among students – consistently

identifies high and low scoring students. Following our earlier

lead, let us assume that we have three sources of error – facets

– of interest: raters, cases, and occasions.3 We will include all

of these in a single design. We have the 10 cases (stations)

in the original design. We also want to see how much error

is coming from different raters, so we would perhaps include

a second rater (another standardized patient perhaps) as an

observer in each station. We now have a two-factor repeated

measures design, with rater (2 levels) and station (10 levels) as

the two facets of generalization. Finally, perhaps student skills

vary from day-to-day. To test this, we might actually create a

2-day test, so they do five cases on one day and then again

two weeks later. Now, we have a three-factor ANOVA with

day, case, and rater as facets of generalization.

There is a subtle difference between these facets that has

a major impact on the design and analysis. In ANOVA

terminology, day, station, and rater are all said to be crossed

with student; by that we mean that every level of day or rater

occurs at all levels of student – each student does both days, all

five cases, and all raters. In the design above, station and day

are crossed as well, since each case occurs on both days.

However, rater is nested in station, since each rater occurs at

only one station. We could have made station nested in day by

using 10 different stations, 5 on day 1 and 5 on day 2. And we

could have, with difficulty, crossed rater with station by, for

example, video-taping each performance and having the same

two raters watch all students and all stations.

We can also introduce stratification facets into the design.

Commonly, OSCEs are done with multiple circuits so a large

number of students can be ‘‘processed’’. If we did that, then we

could imagine that the first 10 students do circuit 1, 11–20 do

circuit 2, and so on. In that case, assuming all circuits use

the same stations, then rater and student are nested in circuit.

And since student is the facet of differentiation, circuit

becomes a stratification facet.

Why does all this matter? As we increase the number of

factors/facets, we not only increase the number of main or

overall effects in the design, but we also introduce various

interactions. For example, a station� day interaction is a

measure of the extent to which the scores assigned to different

stations are different on successive days. A student� station

interaction shows whether different students find different

stations easy or hard. The magnitude of various interactions

provides useful information about sources of errors.

In addition, all of these interactions have to be dealt with

individually in constructing G coefficients, as we will begin

to see in the following section.

However, we can only have an interaction between crossed

facets. As a counter-example, while we can have a stu-

dent� day interaction (do some students do better on day 1

and some on day 2?) we cannot have a student� circuit

interaction (do some students do better on one circuit than

another?) since each student can only be in one circuit. And we

cannot have a rater� station interaction for a similar reason.

Nested facets are written as student : circuit and rater : station to

make this distinction.

Finally, we can use this example to illustrate another bit

of technical jargon. So far, the design is balanced – there are

10 students per circuit for all circuits, 5 cases, 2 raters, etc.

But suppose some students were overcome with nerves and

dropped out, so that the number of students per circuit varied

from 7 to 10. We would now say the design is unbalanced.

While G theory software is capable of dealing with unbalanced

designs of considerable, though not unlimited complexity, the

multipliers for individual terms in the G coefficients becomes

more complex. We will get into the details later.

G coefficients – General form

To this point, we have discussed various kinds of facets – the

object of measurement, which is roughly equivalent to

‘‘subjects’’ in CTT, facets of generalization, which are equiv-

alent to the various other facets such as ‘‘raters,’’ ‘‘items,’’

or ‘‘occasions’’ in CTT, and ‘‘stratification facets’’ that have

no classical equivalent. We now describe general strategies to

combine these into G coefficients.

Every G coefficient has the same form of an intra-class

correlation as described in ‘‘signal and noise’’ and ‘‘two-way

ANOVA’’ sections. As before, it is a ratio of the ‘‘true’’ variance

to the sum of ‘‘trueþerror’’ variance. What differs is the

individual variance components that go into the numerator

and the denominator.
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We have already distinguished between the variance due

to the object of measurement (and there is only one of them)

and the facets of generalization. For consistency with Brennan,

we will always describe the facet of differentiation as p for

‘‘persons.’’ But as in the OSCE example, we can have any

number of facets of generalization limited only by imagination

and logistics. In turn, these can lead to distinct G coefficients,

so that a single G study design can theoretically create a large

number of coefficients. Some may be analogous to classical

coefficients, such as inter-rater, test–retest, or internal consis-

tency; others may have no classical equivalent. For a crossed

design with 2 facets, we can have 3 G coefficients; for 3 facets,

7 coefficients, for 4 facets, 14 coefficients, etc. Of course not

all these are interpretable or useful. For obvious reasons,

we cannot come up with standard names like ‘‘inter-rater’’

to describe these various coefficients. Instead, we adopt a

standard nomenclature, in which we distinguish between fixed

facets of generalization and random facets of generalization.

To see how this works, let us return to the OSCE again.

We have P(erson) as the facet of differentiation, S(tation),

D(ay), and R(ater) as facets of generalization. Below is the

complete set of possible G coefficients, with classical equiv-

alents where they exist:

Facets of
generalization

Object of
measure Fixed Random Question

Classical
equivalent

P D,S R To what extent can I

generalize from one

rater to another?

Inter-rater

P D,R S To what extent can I

generalize from one

station to another?

Internal

consistency

P R,S D To what extent can I

generalize from one

day to another?

Test–retest

P D R,S To what extent can I

generalize from one

rater on one station

to another rater/

station?

P S D,R To what extent can I

generalize from one

rater and day to

another?

P R D,S To what extent can I

generalize from the

same rater on one

day and station to

another?

P D,S,R To what extent can I

generalize across all

facets to a compa-

rable overall Test?

While the generalizations over two facets do not make

much sense, the last coefficient certainly does. It basically says,

‘‘Given the way we have defined the universe of observations,

considering all the sources of error, this is the coefficient

indicating how well we can generalize any score to another

parallel test.’’ Further, the other coefficients can be directly

compared to determine large vs. small source of error, since

all are based on the same sample of subjects, cases, raters, etc.

In short, we can use the information from the G study

diagnostically to identify major and minor sources of error.

How are the coefficients constructed? We construct a signal

term and a noise term, very much like the preceding

discussion. The signal, labeled � (tau) by Brennan, consists

of all the variance components (main effects and interactions)

due to the object of measurement and all the fixed facets.

The noise term labeled either � (DELTA) or � (delta)

comprises all main effects (�) and interactions (� and �)

that have the facet(s) of generalization in them (we will go into

this in more detail later).

The distinction between � and � relates to the absolute or

relative error coefficients. If we wish to interpret a person’s

score relative to all other persons in the study, the main effects

of the facets of generalization (e.g., the main effect of ‘‘item’’)

are irrelevant; it amounts to moving everyone up or down by

the same amount. So we would omit any main effects of G

facets from the error term. Conversely, if we want to place an

absolute interpretation on a person’s score (John’s IQ is 122),

then any systematic (main) effects of item or rater introduce

error into this estimate. These main effects (and the interac-

tions between G facets) now go into the error term.

If we are computing the absolute error, we use �; if we are

calculating relative error we use �. Basically, � contains all the

relevant main effects; � does not. So, conceptually, for each G

set of facets of generalization and differentiation, we have two

coefficients:

E�2
¼ �/(�þ �) relative error,

�¼ t/(�þ�) absolute error.

Unfortunately, Streiner and Norman (2008b) use a different

approach. They approach the issue of absolute vs. relative error

one facet at a time, and each facet is identified by the user as

either absolute or relative as part of the data input. For example,

if we were analyzing a clinical skills rating form, to be

completed by different observers, we might well decide that

we can ignore the main effect of item, since all students are

rated on the same items. The main effect then just shifts every

person’s score up or down by the same amount. In Brennan’s

terminology, we would say that we would use relative error,

since this amounts to excluding the main effect of item from the

denominator. On the other hand, if each student is rated by a

different supervisor, then any main effect of rater would affect

different students differently, so should be included – absolute

error. Brennan does not allow this individualization, although

in ‘‘computing G coefficients’’ section, we will discuss how

to create coefficients reflecting these differences. Streiner and

Norman (2008b) do allow it in their description, however they

use different terminology. If the main effect should be included,

this amounts to declaring a ‘‘random factor;’’ if not, the effect is

declared a fixed facet. The terminology originates in the idea of

fixed or random effects in ANOVA.

Some other examples of absolute and relative errors. In a

self-completion scale (learning style or depression) we would

likely use relative error, since the items are always the same.

If we had an essay test where people could, for example, write

on three topics of the five listed, we would use absolute error,

since the main effect of essay is reflected in differences

on individual scores.
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D studies – G coefficients for multiple levels

In CTT, one useful extension is something called the Spearman–

Brown formula which is used to determine the reliability of a

test that is ‘‘k’’ times as long as the original test. That is, if the

study computed the reliability of a 10-item test, we could use the

Spearman–Brown to estimate how reliable a 20, 40, or 100-item

test would be. The basic strategy amounts to dividing the error

variance term by ‘‘k’’ (analogous to the relation between the

standard deviation and the standard error of the mean).

G theory goes two better. Because we are simultaneously

considering error variance from multiple sources, we can also

vary the number of levels of each source. In this example,

having determined the generalizability of a single observation

over raters, stations, and days, we can first determine the

generalizability of the test we used by dividing error variances

containing day by 2; containing rater by 2, and containing

station by 5.

But the next extension is even more interesting. Once we

have the variance components, we need not stick to the levels

in the original study. We can insert whatever ‘‘ns’’ we choose.

In this decision or D study, we can then ask optimization

questions like, ‘‘Given that we have 2� 2� 5¼ 20 observa-

tions available, what combination of observations yields the

maximum generalizability?’’ We could investigate a number of

possibilities:

Rater Station Occasion

2 5 2

4 5 1

1 10 2

2 10 1

5 2 2

2 2 5

When you think about it, the general strategy would be to

spread the observations out so that facets associated with large

error variance are divided by larger numbers and those with

small error variance are divided by small numbers. But you do

reach a law of diminishing returns, so that typically the optimal

generalizability occurs with intermediate values.

Summary

In this section, we have introduced the reader to the basic

concepts of G theory. We have shown that it is an extension of

CTT that deals with multiple sources of error simultaneously.

We have illustrated how this permits much greater precision

in examining and reducing the sources of error variance in

a measurement situation.

Designing your G study

Outline

. What is the dependent variable?

. What is the ‘‘object of measurement?’’

. What are the facets of generalization?

. What (if any) are the stratification facets?

. Which facets are nested and which are crossed?

. How do I specify the number of levels of each facet?

Designing G studies is a bit tricky, but it basically follows the

same steps you would use in any research study. You must

figure out your dependent variable, independent variables,

and research design. There are constraints on the choice and

configuration of variables, which we will get to in due course.

But the steps remain the same.

What is the dependent variable?

What are you trying to measure? Is it a score on a written test?

A rating scale filled out by a supervisor? Are you interested in

biological measurements like body mass index or range of

motion? G theory is pretty well indifferent to the actual

measurement. In particular, this is the right time to deal with

some longstanding myths about measurement.

Myth 1: Rating scales are ‘‘ordinal measurements’’ and

you have to use non-parametric (like Spearman’s rho or

chi-square) to analyze them.

If this were so, G theory would be out of business, since it is

based entirely on ANOVA which is a ‘‘parametric’’ procedure.

This particular axiom has been around as long as we have

been doing measurement (we, the authors) which is a pretty

long time. And it has been disproved again and again for

almost as long (Norman 2010).

Myth 2: Your data have to be normally distributed or you

cannot do ANOVA.

You do NOT have to have normally distributed data. Anyone

who says so is revealing his ignorance of basic statistical

theory. ANOVA and similar methods are based on distributions

of means, and the central limit theorem says that, for

moderately large sample sizes (410), the means will be

normally distributed regardless of the actual distribution of

the data.

So you can do G theory analysis on just about any kind

of measurement. In fact, you can even do G theory on sets

of 0’s and 1’s (like dead¼ 0, alive¼ 1). This sounds bizarre

in the extreme; you are supposed to use Cohen’s Kappa

(Cohen 1960). However, in 1973, Fleiss and Cohen showed

that Kappa and the ICC (which we described in ‘‘two-way

ANOVA’’, and underlies all of G theory) are mathematically

identical. On more than one occasion, we have done G

analysis on binary data, computed G coefficients, and reported

them as ‘‘generalized kappa’s’’.

It sounds like there are very few constraints, and there are.

But there is one that really matters. As we have already

described, G studies depend on repeated measurements

across different conditions (e.g., three raters, two times), to

partial out the error variance. And all the variance derives from

deviations from the overall or ‘‘universe’’ mean. For this to

happen, it must be meaningful to average across all conditions.

So multiple raters using the same scale is fine. But if we were

looking at, for example, the student’s total score in a course,

where the individual subscores were, (a) 2 assignments based

on 10-point scales, (b) group participation out of 5, (c) a

midterm out of 20, and (d) a final exam out of 60; it would be

nonsensical to average these. If you converted everything to

a percent, let is say, then statistically it may be defensible.

But even so, conceptually, does it make sense to talk about
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the generalization from an assignment score to group partic-

ipation? Perhaps; but all may be samples of an underlying

trait called ‘‘statistical competence’’ – the issue requires careful

thought.

What is the ‘‘object of measurement’’?

This seems about the easiest question of all. What are we

trying to attach the measurement to? In the above example, it is

student; we are trying to figure out how well our various tests

can differentiate among students (tell them apart). But perhaps

because it seems so straightforward, every so often someone

gets it entirely wrong. For example:

(a) We want to get patients to rate their satisfaction with

their experience on our inpatient ward. The object of

measurement is ‘‘ward’’. Patients are raters of the ward.

And the study, as conceived, is undoable, since with

only one ward you clearly cannot work out the variance

between wards.

(b) We get our friends (n¼ 10) to rate a number of red

wines (n¼ 5) on four seven-point scales.

There is always one and only one object of measurement

per analysis. Once this is decided, you can now take the first

step in creating the study design and database. Imagine the

spreadsheet that will contain all the data. The start is to assign

one line (row) to each subject (object of measurement), so that

all observations for each subject will then fill in successive

columns. Subject ID can be created for each row; the exact

numbering approach is irrelevant as it is not needed by the

analysis software. Most G studies will follow this ‘‘one line per

subject’’ strategy, but not all. We will identify the exceptions

later.

Because the object of measurement is usually a person,

most books on G theory reserve the symbol ‘‘p’’ for the object

of measurement. We will do the same when we get to

computing G coefficients.

What are the facets of generalization?

Well, now is the time to let your imagination run wild. What

are the possible sources of error in any estimation? Some

obvious ones come easily to mind – raters (of communication

skills, say) hence inter-rater reliability; items (on a test) –

internal consistency; times or occasions, and test–retest

reliability. But if we have a test comprised of multiple cases,

a much more important source may be the cases. Inter-rater

reliability is usually around 0.7–0.8, however study after study

shows that inter-case reliability is closer to 0.1–0.3. That is why

OSCEs work; they assess competence by averaging over

anywhere from 10 to 20 cases or stations.

Other facets are less obvious. Often rating scales have

multiple subscales – quality of life may be comprised of

physical, social, and emotional functions. These dimensions

can be viewed as a facet of generalization as well. Different

experimental conditions may be a facet; for example, to what

extent can we generalize a rating of a surgical resident’s

suturing skills from a static simulation to an actual patient.

There is an obvious upper limit in that we can only make

a limited number of assessments before our subjects’ rebel.

So you should try to arrive at a list that encompasses all the

likely large error sources. Once we have identified these

facets, we are well on the way to designing the study. But first

we must examine one other kind of facet.

What (if any) are the stratification facets?

In the Research Design section, we discussed the idea of

stratification facets. These arise when the facet of differenti-

ation (usually persons) is ‘‘nested’’ or ‘‘blocked’’ in some other

variable. Examples abound:

(a) Tests may be conducted at different locations or

on different days, so student is nested in location

or day.

(b) Patients may have different severity of disease, so if we

are seeking a measure of anxiety or depression, we may

want to stratify patients by severity.

(c) We may be conducting a validity study where we will

examine whether senior students perform, on average,

better than junior students; student is stratified in

educational level.

Returning to the database, we can envision the stratifi-

cation facets as additional columns. These can be identified

by some ordinal index, most commonly 1, 2, 3, . . . .

G_String requires that all subjects within a particular

stratum occur together. So the first n1 rows may be from

the first stratum, the next n2 rows, from the second stratum,

and so forth.

Which facets are nested and which are crossed?

We defined ‘‘nested’’ and ‘‘crossed’’ in ‘‘research design’’

section, but let us review. A facet ‘‘A’’ is crossed with ‘‘B’’ if

each level of A occurs at all levels of B; it is nested if each level

of A occurs only at one level of B. So what, exactly does that

mean? It comes clear with a few examples.

(a) An inter- and intra-rater reliability study in radiology.

Three raters examine 50 chest films on one occasion and

again two weeks later. There are two facets – rater

and occasion. Since each rater is present on both the first

and second occasion, rater is crossed with occasion.

(b) Forty students go through an OSCE with 10 stations,

each with 2 raters. Unlike most OSCEs, all stations use

the same four-item rating form with Likert scales. There

are three facets – station, rater, and item. Rater is nested

in station, since the same raters cannot be present at all

stations (they could, we suppose, if raters and students

went along together from station to station. But this

design would completely confound rater differences

with student differences and would be a very bad idea).

Item is crossed with station, since all stations use the

same items. If it were the more common checklist

specific to each station, then item and rater are both

nested in station.

(c) Seven teachers of different sections of a first-year

psychology course are rated by their students on the

Generalizability theory for the perplexed
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same rating scale. Teacher is the facet of differentiation,

and here student (rater), a facet of generalization, is

nested in teacher since each student belongs to only one

section. But item (on the scale) is crossed with teacher,

since all teachers are rated on the same items.

(d) Fifty patients complete a quality of life scale twice 2

weeks apart. It contains three subscales: physical func-

tion with 12 items, social function with 8 items, and

emotional function with 6 items. There are three facets

of generalization – time, (2 levels), subscale (3 levels)

which are crossed (all subscales occur on both times),

and item, which is crossed with time but nested in

subscale, and has 12, 8, and 6 levels.

From these examples, it is evident that we can have various

kinds of nesting – one facet of generalization nested in another

facet of generalization, (b and d) or a facet of generalization

nested in a facet of differentiation (c). Further, nested facets

may have the same number of levels in each nest (two raters

per station in B) or different (raters in c; items in d). If it is the

same number, it is called a ‘‘balanced’’ design; if not, an

‘‘unbalanced’’ design.

One thing we cannot do, a limitation of urGENOVA, is have

a facet of generalization nested in a stratification facet (such as

students at different hospitals having different OSCE stations).

Specifying the number of levels

How do we deal with unbalanced nested designs?. Setting up

a crossed design is easy. In the wine-tasting study we have

5 wines� 10 raters� 4 items. We would likely just create a

single row for each wine and spread the 10� 4¼ 40 ratings

across 40 columns.

Balanced nested designs are also easy. In example (a)

above, we have a total of four facets and all but rater are

crossed: student (40 levels), station (10 levels), rater (2 levels

in each of 10 stations), and item (4 levels). Again, we

would likely just layout the data in one record per student,

with 10� 2� 4¼ 80 columns. Alternatively, we could have

one line (row) per station, so that the first line is student 1,

station 1; line 2 is student 1, station 2, . . . . Line 11 is

student 2, station 1.

In nested designs, when G_String gets to asking for the

levels, it will create as many boxes as there are nests (in this

case, 10). When you input the first value (2) it will

automatically create the same number in all the remaining

cells. If the design is balanced, then all levels are now

specified. However, if the design is unbalanced, (i.e., the

number of raters per station varies) then you can overwrite

these automatic values.

There is another way, however. Situations arise where

there are large numbers of ‘‘nests’’. In one study, there were

15,000 patient ratings of 1000 physicians; the number per

physician varied from 2 to 35. In another, students rated

lectures from different faculty members; the total number of

ratings exceeded 27,000 and varied from 1 to 55. These are

both situations where rater (patient or student), a facet of

generalization, is nested in teacher or doctor, the facet of

differentiation. If we were to do the problem manually, we

would have to enter over 1000 two digit numbers into

G_String, with real possibility of error. The alternative is that

G_String will do this automatically. We simply create an

index for teacher or doctor (an index for rater is not

necessary) and ensure that there is one record per rater and

all record are sorted in ascending order, so all ratings of

doctor 1 occur first, then doctor 2, then doctor 3, and so

forth, G_String then automatically generates counts of the

numbers in each nest.

We can use the same automatic facility if we have a

nested, unbalanced facet with multiple observations on each

record. For example, we get people leaving hamburger shops

to rate each burger on a single seven-point scale, and we get

from two to seven ratings. The facet of differentiation is

‘‘Burger;’’ and there is one facet of generalization, rater. If

these two to seven ratings are all on the same row, G_String

can automatically count how many ratings there are for each

burger.

Summary

If you follow these steps, you will now have all the information

you need to design the G study and to devise the format of the

database.

Computing G coefficients

Outline

. G coefficients

. General rules

. Rules for creating �, �, and �

. Rules for creating the divisor for each facet

. Absolute, relative, and mixed error coefficients

. Coefficients for nested designs

In the last section, we conceptually worked out the design

of the study. It is now ready to be analyzed; the specifics of

how G_String is set up for analysis are described in the

following two sections. Strictly speaking and from a purely

practical point, you do not actually need to read the

following explanations. However, if you are suffering from

an irrepressible need to understand what you are doing, here

it is. In this section, we will go through the theory of

calculating G coefficients. The seven steps of generalizability

analysis are:

(1) formalizing the problem;

(2) organizing the data;

(3) calculating group means;

(4) calculating mean-square differences for groups;

(5) estimating group variances;

(6) estimating variance components for effects; and

(7) calculating appropriate ICCs.

Steps 1–6 represent standard analysis of variance

approaches. Steps 3–6 are actually being calculated by

urGENOVA within G_String with no fuss, so we need not go

into much further detail. The specifics are all handled

in standard statistics texts that deal with repeated measures
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ANOVA. The preceding sections gave you an overview.

However, to go from variance components to G coefficients

in Step 7, we are treading onto unfamiliar territory. Most of the

details have been worked out by Brennan, and what follows

is a direct interpretation of his theories. We have added

some extra theory around stratification facets, which we will

describe in due course.

To begin with, let us remind you of the general form of the

G coefficient:

G ¼
varðsignalÞ

varðsignalÞ þ varðerrorÞ
:

What happens in G theory is that, although the total variance

(var(signal)þ var(error)) remains the same, as we make some

facets fixed and other facets random, we actually change the

apportioning of this variance to signal and error. To make

the algebra a bit more efficient let us redefine the terms,

consistent with Brennan. Signal is called �, and error is called �

if it is relative or � if it is absolute (See ‘‘research design’’

section). So the general form of the G coefficient, in Brennan

terminology, is:

G ¼
varð�Þ

varð�Þ þ varð� or �Þ
:

We now have to work out what specific variance components

(main effects and interactions) go into each of �, �, and �.

In the rules below we develop a framework that applies to

any design. It is based in part on Brennan’s (2001) rules on

p.122 of his book.

Rules for assigning types of facets

Rule 0 4

Components of variance result from three sources:

(a) the object of measurement (facet of differentiation), p.

There is only one p (for ‘person’),

(b) facets of stratification,5 S1, S2, . . . .These are of the form

p : S1,S2, defined in Screen 4 of G_String, and

(c) facets of generalization: G1, G2, G3, . . . .

Rule 1

Facets of stratification (Si) appear in ANOVA (and eventually

in G_String), but cannot be facets of generalization. Facets

of stratification can be recognized by the fact that they

provide containers for a nested object of measurement (facet

of differentiation).

Rule 2

Facets of generalization, either nested in or crossed with p, are

specified as of two types in the calculation of G coefficients:

random facets Rj, and fixed facets Fk. These are specified

in Screen 12 (and can be changed by the user on successive

calculations). In the intitial run run, G_String automatically sets

all facets of generalisation to random.

Rule 3

Nesting of variables may arise in several different ways and

are handled differently according to the rules to follow.

(a) p:Si – by definition, p can only nest in Si. These are

handled in Rule 1.

For example, when programs run an OSCE, it is very

common for students to be nested in hospital, day, or

circuit. National examinations may have candidates nested

in city.

(b) Gi:p – facets of generalization can be nested in the

object of measurement.

For example, students’ ratings of teachers, or patients’

rating of doctors, where each student or patient has only

one teacher or doctor, but each doctor or teacher may have

multiple ratings by different patients or students.

(c) Gi:Gj and Gi:Gj:Gk – facets of generalization can be

nested in other facets of generalization, such as items

nested in OSCE station.

One example is an OSCE using checklists, where each

station has a different content-specific checklist. Another is

a case-based written examination, where each case may

have several questions, so question is nested in case.

Questionnaires with subscales often have item nested in

subscale.

Another example would be items within subscales (e.g.,

verbal reasoning, analogies) in an IQ test. Or individual

questions nested within cases in a written patient manage-

ment test.

Note: Nesting of facets results in elimination of certain

interactions in the ANOVA, but these are handled automat-

ically by urGENOVA. There are also implications for the

division by ‘‘n’’ in D studies.

Rules for creating the variances of t, �, and �

Rule 4 (Brennan, 2001, Rule 4.3.1, p. 122).

varð�Þ ¼ varð p, including p : SÞ

þ varðall p� Fk interactions not containing any Rj Þ

þ varðall main effects of form Fi : p not containing

any Rj Þ:

Explanation: The general strategy is that � contains the object

of measurement and all its interactions with fixed facets.

The reason behind this rule with respect to nested variables is

that with fully crossed design, � contains all interactions

between p and F but not the main effect of F. With nested

design, the variance due to nesting (e.g., var(Fi:p)) actually

contains the p� Fi interaction so is in � term.

When a facet is a facet of generalization, its main effect

will be in �. However, when it is a fixed facet, (if it is not

nested in p as below), the main effect does not move to �, see

Brennan (2001, section 4.4.1). He states that ‘‘fixing a facet

affects which variance components contribute to � and � but it

does not change their sum.’’ However, in the example it DOES

change sum of t and � since, when facet is random its main

effect is in � but when it is fixed, main effect is not in �.
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All effects that contain the facet of differentiation but no

random facet of generalization contribute to �(�).

Rule 5 (Brennan, 2001, Rule 4.3.3, p. 122).

varð�Þ ¼ varðall terms containing p and Rjg,

including specifically all terms of form

p� Ri � Rj ,Rj : p,p� Rj : Fi ,p� Fi : Rj ,p� Fi � Rj Þ:

Explanation: The error term consists of all terms containing

the random facet(s), R. The reason behind this rule with

respect to nested variables is that, with fully crossed design, �

contains all interactions between p and Rj. With nested

design, the variance due to nesting (e.g., var(Rj:p),

var(p� Fi:Rj)) actually contains the p�Rj interaction

(RjþRj� p) in the first case, p� Fiþ p� Fi�Rj in the second

case and, therefore, belong into the error term.

All effects that contain at least one random facet of

generalization and interactions between the random facet(s)

and the object of measurement, p, contribute to var(�).

Rule 6 (Brennan 2001, Rule 4.3.2, p. 122).

varð�Þ ¼ varðall terms containing Rj Þ

þ varðall terms containing Sj ,

specifically including all main

effects of Rj , all interactions of form p� Rj Þ

þ varðall interactions between Rj and other

facets, e:g:, RjFk and RjRkÞ

þ varðall terms containing Sj to left of

colon including main effect of SÞ

þ varðall interactions between Sj , and

G facets; but excluding terms where

Sj is to the right of the colonÞ:

Explanation: All effects that contain at least one random facet

of generalization and all effects that contain a stratification

facet (unless the S facet is to the right of the colon) contribute

to var(�).

Stratification facets are of two types – those that might be

termed ‘‘experimental,’’ where there is an anticipation that

there will be a large main effect of the stratification facet

(e.g., educational level) and those that are part of the design,

but the expectation is that there would be no effect of S

(e.g., day, circuit, in an OSCE). For experimental strata:

(a) the remaining facets are crossed (every stratum gets the

same measures (for example, all persons get the same test

items)) since this is the only way that one can test hypotheses

about differences, (b) the RELATIVE ERROR term is appropri-

ate, as generalization is within facet. For design facets, the

strata may contribute error in interpretation of particular

scores, so the appropriate term is the ABSOLUTE ERROR term.

Rules for creating the divisor of each facet
in the G coefficient

Rule 7

For balanced designs, the divisor of each facet in a term in �, �,

or � (except for terms involving p or S) is the number of

levels of the facet in the term. For terms in p or S the divisor

is always 1. For every interaction term in �, �, or �, the divisor

is the product of the divisors of the facets making up the

interaction. Thus a term of the form G�H will be divided

by the product of the divisors of the individual terms.

So for crossed designs, terms like g1� g2 will be divided

by ng1�ng2. For nested facets of the form g1 : g2 the divisor

is also ng1�ng2.

For balanced designs, the divisor for each facet of

generalizability is the number of levels of the facet. For p

and S facets, the number of levels is always one. For nested

facets of form g1:g2 the divisor is ng1�ng2.

Unbalanced designs are of three types, and each requires

different treatment.

Type 1: p:S (Person nested in a stratification facet)

We have already dealt with this situation above. The

divisor for a stratification facet is always one.

Type 2: G:p (Facet of generalization nested in person)

In this design, at least one facet is nested within the object

of measurement.

A very common example is student ratings of teachers,

where each student is in one classroom, so student is

nested in teacher. ‘‘Multi-source feedback’’ is another;

a physician seeks ratings from a number of patients and

colleagues. Patients are nested in physician.

In this case, the G coefficient is divided by the number of

levels of person (which is set at one)� the average number

of levels of rater, which according to Brennan is computed as

the ‘‘harmonic mean’’ – basically the average of the (1/n)

terms, one for each p.

~ng ¼
npP
p

1
ng:p

:

For unbalanced designs of form G : p, the divisor is

the harmonic mean of the number of observations at each

level of G.

Type 3: G1 : G2 (One facet of generalization nested in

another)

This situation, where one facet of generalization is

nested in another, is encountered quite frequently. Some

examples:

– a case-based test, where each case has different ques-

tions (and different numbers of questions),

– a questionnaire with different questions in each

subscale, and

– an OSCE, with different checklists with different num-

bers of items, in each station.

In this situation, as in balanced designs, there is an ‘‘n’’

associated with the appearance of G1 : G2 and another asso-

ciated with G2. For G1, the ‘‘sample size’’ is simply the

total number of observations of G2, which Brennan calls ‘‘nþ’’
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(pp. 219, 232). For a balanced design, this is just nG1 : G2�nG2.

For an unbalanced design, it is:

nþ ¼
X
g2

ng1:g2

For example, if 5 subscales had 2, 4, 5, 7, and 11 items

each, nþ¼ 29. If 5 subscales had 3 items each, nþ would be

5� 3¼ 15.

However, the imbalance in G1 also affects the denominator

of G2. According to Brennan (2001, p. 232), whenever G2

appears, the variance will be divided by ~ng2, which equals:

~ng2 ¼
n2
þP

g2n2
g1:g2

:

In the above example, this equals 292/(22
þ 42
þ 52
þ

72
þ 112)¼ 841/215¼ 3.9.

Type 4: G : p : S, G1G2 : p : S (Facet of generalization nested in

person nested in facet of stratification)

This design is an extension and combination of Type 1 and

Type 2. Person is nested in one or more stratification facets

and at least one facet is nested within the facet of

differentiation.

As in Type 2, this may arise from a situation where students

in a class rate their teacher, or employees in a company

rate their supervisor. However, now the facet of differen-

tiation is also nested (e.g., teacher within school or

supervisor within company).

As before, the divisor for terms involving S is always 1,

since each person can only occur at one level of S. Similarly,

for the facet of differentiation, p, the G coefficient is divided

by 1. And as before for the facets of generalization nested

in the stratification and differentiation facets, the divisor is the

harmonic mean.

Thus in the G : p : S design, the specific terms are S, p : S, and

G : p : S. Variance due to S and G : p : S would be in � term;

only G : p : S would be in the � term. The divisors for these

terms in the G coefficient are S/1, p : S/1, and G : p : S/ñg where,

as before, ñg is the ‘‘harmonic mean’’ – the average of the (1/n)

terms.

In the G1G2 : p : S design, the specific terms are S, p : S, G1 :

p : S, G2 : p : S, and G1G2 : p : S. As in the single G facet case,

divisors for p and for S are 1; any term involving a facet of

generalization (G) will be divided by the harmonic mean of the

n’s contributing to the variance. And the product term G1G2 : p :

S is divided by the product of the two harmonic means.

p : S g : S multiple stratified facets

There is one common design that cannot be handled in

urGENOVA and, therefore, G_String. It is often the case

that tests may occur at different sites or on different days.

If different sites use different forms (or, more commonly,

different raters) then, strictly speaking, the G facet is nested

in the S facet. In our formalism, this is a p : S g : S design.

urGENOVA does not handle this case. Consider what would

happen if we found a difference between sites. This could

arise either because students at site A are better than those

at site B, or raters are more lenient at site A than site B. There

is no way of disentangling those two. Similarly, if there is no

difference, the two sites could be equal, or any difference

in student competency could be compensated by opposite

differences in rater leniency These ideas are elaborated in

Keller et al. (2010).

Absolute error, relative error, and mixed error
coefficients

In ‘‘research design’’ section, we discussed the conceptual

difference between the absolute error coefficient and the

relative error coefficient, where the former included all main

effects in the error term �, and the latter include no main

effects in the error term �. However, the situation may arise

where it makes sense to include some main effects but not

others. For example, if a group of medical charts are being

audited by peer review using a standard form with 10 items,

it may make sense to include the main effect of rater, since

different charts may well be rated by different raters, so any

rater bias may not be identifiable. On the other hand, since all

raters are using the same checklist, the fact that some items

may be systematically harder or easier than others is irrelevant

to score interpretation.

This is not done automatically in G_String, but it is not

difficult to use the variance components produced by G_String

to create mixed coefficients. It also commonly emerges that

the absolute and relative error coefficients are very similar,

in which case further refinement may be unnecessary.

Summary

In this section, we have explained the rules for conducting G

study analyses and for generating G coefficients for any

(permitted) class of design.

G theory software

Outline

. From theory to software

. Overview of G_String

As we have seen previously, analysis using G theory

involves a number of steps:

(1) formalizing the problem;

(2) organizing the data;

(3) calculating group means;

(4) calculating mean-square differences for groups;

(5) estimating group variances;

(6) estimating variance components for effects; and

(7) calculating appropriate ICCs.

Generalizability theory for the perplexed
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There is no fundamental reason why any of these steps

could not be performed by hand using nothing but paper,

pencil – and endurance. In reality, however, homo iPhone

either forgot how to do mental arithmetic, or she/he does

not have the necessary patience any more. Some or other

electronic gadget, therefore, has to come to the rescue.

Steps 1–4 are, apart from the numerical effort, relatively

trivial. In the case of well-balanced datasets, Steps 5 and 6 do

not pose conceptual hurdles either. What do we mean by well

balanced?

. Facets and population are either mutually crossed, or where

nested, the number of nesting levels in each facet stays

constant throughout.

. There are no missing data.

Things get complicated, when either or both of these

conditions are not met. As long as the imbalance is relatively

minor, we can employ an analogous-ANOVA method.

However, the random nature of actual datasets does not

guarantee that all estimates for variance components come

out positive. The convention for dealing with negative

variance component estimates is to set them arbitrarily equal

to zero, without adjusting the other component estimates

accordingly. Other, more complex methods for estimating

variance components with unbalanced datasets exist. But for

the case of G studies, this does not make a significant

difference.

Most general purpose statistical packages, such as SPSS,

SAS, or MATLAB, can handle Steps 2–6, as long as the

population size and number of facets are small enough.

However, these programs attempt to solve general design

matrices, whose dimensions grow very quickly with sample

size and number of facet levels. As a consequence, calcula-

tions of generalizability parameters for realistic datasets can

quickly become very time and resource consuming.

As a consequence, researchers have developed specialized

computer programs for generalizability analysis since the

1980s. One of the first programs ETUDGEN, developed by

François Duquesne at the University of Mons in Belgium

around 1982, is the ancestor of EduG by Cardinet et al. (2010).

One of the pioneers in G theory, Brennan from the

University of Iowa, developed GENOVA, a suite of programs

that are generally considered to represent the gold standard

for generalizability analysis and placed them in the public

domain. Included is urGENOVA, a command line program

running in DOS, which calculates univariate, random effect

variance components for moderately unbalanced datasets

employing the analogous ANOVA procedure (Henderson’s

method 1).

However, using urGENOVA is not for the faint of heart.

While it performs Steps 3–6 very efficiently, it requires a

control file with a somewhat picky syntax and does not

understand Windows file names. Neither does it perform

Step 7 of the generalizability analysis. For these reasons,

urGENOVA is not used as widely as it deserves. But

duplicating the superb functionality of urGENOVA does

not appear to be very rational. We have, therefore, written

G_String, a user friendly, visual Windows program as a

wrapper around urGENOVA that takes users relatively seam-

and painlessly through all seven steps.

Early versions of G_String contained only Steps 1–6, but

repeated comments from users motivated us to incorporate

Step 7 as well. Originally, we employed a series of

‘‘IF . . . THEN . . . ELSE . . .’’ tests. But in view of the proliferation

of experimental models that users wanted to analyze, we now

employ transformational syntax. This not only simplifies

the program, but it will also make it easier, to incorporate

further models in the future.

As shown in ‘‘signal and noise’’ and ‘‘two-way ANOVA’’

sections, the calculation of mean-square differences involves

taking a small difference of two large accumulated sums.

This type of calculation can lead to large rounding errors.

We have considered it advisable, therefore, to renormalize

the scores by subtracting the grand mean before summation.

This keeps the sums from growing linearly with the number

of items summed up. Consequently, rounding errors remain

confined. This normalization brings another benefit. G_String

ignores empty cells, i.e., missing values in the calculation

of the various sums. This means that missing values are

automatically replaced by the grand mean of scores.

In effect, this solution underestimates the effect due to missing

scores.

G_String has three operating modes:

(i) design and number of the various facet levels have to

be specified by the user,

(ii) design and respective index columns have to be

specified by the user, but the program then determines

the levels automatically, and

(iii) the parameters for the G analysis have been stored

previously and are to be re-used for a D-analysis.

The program then leads the user gently through Steps 2–7

with a series of dialogs. A title for the dataset and descriptive

remarks are stored. Design parameters and location of the

data file are solicited and some options can be specified.

The program then generates the control file required by

urGENOVA. Temporary copies of this control file and the

appropriate data file are placed in a special directory contain-

ing urGENOVA. The program then hands control over to

urGENOVA. After completion of Steps 3–6, urGENOVA

generates a result file (extension ‘‘.lst’’) which G_String

uses to calculate the ICCs. The results of Step 7 together

with an explanation of the logic are copied into the result

file as well.

The final results appear both on the screen as well as in the

output file. After the G study has been completed, any number

of D studies can be performed by entering the number of

relevant facet levels and facet modifiers into the appropriate

field and clicking on the ‘‘D study’’ button.

Summary

In this section, we have discussed a variety of computer

techniques and programs used to calculate generalizability

coefficients. We emphasized G_String, a program freely

available at McMaster University, because we are most

intimately familiar with it.
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Worked examples

In this section, we describe a number of common designs

ranging from simple, classical one factor reliability designs

reformulated in G theory nomenclature, to complex multi-facet

nested designs. We have obviously not exhausted the possi-

bilities, but rather have attempted to identify and provide

examples of some of the more common designs.

The intent is to demonstrate how each design is formulated

in the notation of G_String. We describe each design then

reformulate the design in G theory language. We describe

any specific requirements for the format of the input data, and

the sequence of inputs to the screens required to specify the

design. Finally, we show how to iterate values on Screen 12 to

conduct a variety of D studies.

One-facet designs

DESIGN 1.1. Inter-rater reliability

A clinical researcher examines clinician judgment of

severity of illness for patients with congestive heart

failure. She locates complete records of 75 patients, and

distributes these to three respiratory physicians, who

rate each case on a 0–100 scale, where 100 is ‘‘Perfect

Health.’’

This example is a typical design for CTT. However, for

illustrative purposes, we will recast it as a G theory study.

The facet of differentiation is patient; the single facet of

generalization is rater. The design is crossed.

The input screens would resemble:

Step 4 1 

Design 

Step 5 Facet name Abbrev. Crossed Nested 

Raters r • 

Step 8 p 75 

r 3 

Design 

Step 3 Abbrev. Crossed Nested 

Patient p • 

Subj.
Population 

Number of
facets 

The G study output automatically generated on Screen 12

would look like:

Generalized across 

Step 12 Facet name Different Random Fixed Levels 

Patient • 75 

Rater • 3 

Note that the computed G coefficient is for the average of

all raters. To calculate inter-rater reliability for a single rater,

you enter ‘‘1’’ as levels for rater, and rerun.

Generalized across 

Step 12 Facet name Different Random Fixed Levels 

Patient • 75 

Rater • 1 

GENERAL TIP:

Often people distinguish between agreement on nominal

variables, which should be analyzed with Kappa or

weighted Kappa, and reliability with measured variables,

which can be analyzed with ANOVA methods and intra-

class correlations. However, Fleiss and Cohen (Fleiss &

Cohen 1973) showed the two methods are mathematically

identical. This means that you can use the power of G

theory even with data like 1¼ dead, 2¼Alive, see Streiner

and Norman (2008b, Health Measurement Scales, 4th ed.,

pp. 187–188)

DESIGN 1.2. Questionnaire

The researcher administers a questionnaire on ‘‘learning

style’’ with 25 questions and ‘‘Strongly Agree’’! ’’Strongly

Disagree’’ and seven-point scales to a sample of first year

medical students (n¼ 125). He analyses the data to

calculate the internal consistency reliability (Cronbach’s �)

Again, this can be handled with CTT; however, we will cast

it in G theory framework. The facet of differentiation is

‘‘student’’ (s) with 125 levels and the facet of generalization is

‘‘item’’ (i) with 25 levels. Typically the data would be laid out

on a spreadsheet with 125 lines, and 25 columns. Input screens

would look like:

Design 

Step 3 Abbrev. Crossed Nested 

Student s • 

Step 4 1 

Subj.
Population 

Number of
facets 

Generalizability theory for the perplexed
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Design 

Step 5 Facet name Abbrev. Crossed Nested 

Items I • 

Step 8 s 125 

I 25 

The design is formally equivalent to the previous design.

The G study output automatically generated on Screen 12

would look like:

Generalized across 

Step 12 Facet name Different Random Fixed Levels 

Student • 125 

Item • 25 

However, in this case, no further analysis is necessary.

Internal consistency is the reliability of the average score

or total score across all items (Streiner & Norman 2008a,

pp. 88–93) which is the G coefficient computed automatically.

We could then do D studies varying number of items to

determine the effect n reliability.

DESIGN 1.3. Teacher rating

A researcher examines the reliability of teacher ratings.

The analysis is based on the total score over five items,

with five-point scale ‘‘Agree’’! ‘‘Disagree’’ responses.

There are five teachers involved in the study, with each

teacher responsible for a different section. Varying num-

bers of students completing the ratings – teacher 1 – 12

students; teacher 2 – 17 students; teacher 3 – 9 students;

teacher 4 – 15 students; teacher 5 – 22 students.

This design introduces a new concept – nested facets.

Student (s) is nested in teacher (t); since each student can

appear with only one teacher. The design is also unbalanced –

different numbers of students per teacher.

In laying out the data, it is important to note that, while

each row in the spreadsheet will likely contain the five ratings

of each student, in contrast to the previous examples, the facet

of differentiation is not equivalent to the row. We are

differentiating teachers, and student now is a rater of the

teacher, so student is the facet of generalization. Because

G_String identifies data by location in the database, not

identifier, all records for each teacher must appear in sequence

in the database.

The input screens would now look like:

Design 

Step 3 Abbrev. Crossed Nested 

Teacher t • 

Subj.
Population 

Step 4 1 

Design 

Step 5 Facet name Abbrev. Crossed Nested 

Student s • 

Number of
facets 

Step 6: You declare the nature of the

nesting in Screen 6, by dragging ‘‘s’’ (on the left) to ‘‘t’’ (on

the right)

Step 8 t 5 

s 12 17 9 15 22 

Note the differing number of levels for student at each level

of teacher The G study output automatically generated on

Screen 12 would look like:

Generalized across  

Step 12 Facet name Different Random Fixed Levels 

Teacher • 5 

Student : Teacher • 13.7 

Note the fractional number of levels of student. This

is because the harmonic mean is used for these

calculations (see p. 28). You can proceed to do D studies, to

determine the relation between number of raters and reliabil-

ity by simply overwriting the ‘‘levels’’ in student and

recalculating.

Two-facet designs

DESIGN 2.1. Raters and items

To examine the reliability of the abstract review process

for a recent conference, the chair assembled 30 abstracts

at random, and had five judges rate each abstract on four

items – creativity, methodological rigor, analysis,

practical relevance, each with five-point poor! excellent

scales.

This is a straightforward two facet, crossed design.

However, it is critical to recognize that the ‘‘object of

measurement’’ is not a person (the rater) but the abstract.

The data must be laid out with raters grouped within abstracts –

that is, Abs 1 – Rater 1, Abs1 – Rater 2, Abs 1 – Rater 3,

Abs1 – Rater 4, Abs1 – Rater 5, Abs2 – Rater 1, Abs 2 – Rater 2,

Abs2 – Rater 3, etc. These may occur on the same or separate

lines (which is handled in Screen 7) but must occur in this

sequence.

R. Bloch & G. Norman
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The input screens would now look like:

Design 

Step 3 Abbrev. Crossed Nested 

Abstract a • 

Step 4 2 

Design 

Step 5 Facet name Abbrev. Crossed Nested 

Rater r • 

Item I • 

Step 8 a 30 

r 5 

I 4 

Subj.
Population 

Number of
facets 

The G study output automatically generated on Screen 12

would look like:

Generalized across  

Step 12 Facet name Different Random Fixed Levels 

Abstract • 30 

Rater • 5 

Item • 4 

G_String automatically computes the G coefficient corre-

sponding to the average score over five raters and four items

(dividing error variances by 5, 4, or 20). You can also modify

this screen to calculate the G theory equivalent of inter-rater

reliability and internal consistency (�). To do this, the general

strategy is to set the facet of interest as a random facet and

set the other facets as fixed facets. You then modify the

number of levels of the facets. The basic idea is that the

number of levels of each facet is the number of observations

that will be used to average the error variance, either of

random or fixed facets.

Thus, if you wish to examine inter-rater reliability, ‘‘i ’’ is set

as fixed. Then the number of levels of ‘‘r ’’ is set to one,

since, as described in Example 1.1, you want to compute the

reliability of a single rater. If you want to compute inter-rater

reliability of the total score, no. of levels of ‘‘i’’ remains at four;

if you want to compute the inter-rater reliability for a single

rating, ‘‘i’’ is set to one. The possibilities, then, are:

Inter-rater – one item:

Generalized across 

Step 12 Facet name Different Random Fixed Levels 

Abstract • 30 

Rater • 1 

Item • 1 

Inter-rater – average score:

Generalized across 

Step 12 Facet name Different Random Fixed Levels 

Abstract • 30 

Rater • 1 

Item • 4 

Internal consistency (�):

Generalized across 

Step 12 Facet name Different Random Fixed Levels 

Abstract • 30 

Rater • 1 

Item • 4 

Average inter-item correlation:

Generalized across 

Step 12 Facet name Different Random Fixed Levels 

Abstract • 30 

Rater • 1 

Item • 1 

GENERAL TIP

It is always important to be very careful in determining

which facet represents the ‘‘object of measurement’’ or

equivalently, the facet of differentiation. As in the example

above, it is not always the people who are completing the

questionnaire. Serious errors can result. Further, the data

may be analyzed with different facets of generalization,

depending on the question (see Streiner & Norman 2008b,

p. 241, for an example).

DESIGN 2.2. Questionnaire with multiple subscales

A researcher assesses quality of life for a cohort of patients

(n¼ 50) with multiple sclerosis using a quality of life scale

with three subscales – physical – 20 items; social – 12 items;

emotional – 7 items. She examines internal consistency

from the single administration.

Generalizability theory for the perplexed
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The study is quite common. Essentially, from the single

administration, you can examine internal consistency within

scale and between scales. The facet of differentiation is

‘‘patient’’ (p) with 50 levels; there are two facets of generaliza-

tion: subscale (s) (3 levels) and item nested in subscale (i : s),

(20, 12, and 7 levels). The data would typically have one

line perpatient, with 39 observations on each. Input would

look like:

Design 

Step 3 Abbrev. Crossed Nested 

Patient p • 

Step 4 2 

Design 

Step 5 Facet name Abbrev. Crossed Nested 

Scale s • 

Item I • 

Subj.
Population 

Number of
facets 

Step 6: Drag ‘‘I ’’ from left to ‘‘s’’ on right.

Step 8 P 50 

s 3 

I 20 12 7 

The G study output automatically generated on Screen 12

would look like:

Generalized across 

Step 12 Facet name Different Random Fixed Levels 

Patient • 50 

Scale • 2.6 

Item : Scale • 13 

Note the unusual number of levels for both

scale and item: scale. These formulae are described on

pp. 33–34.

The G coefficient represents the internal consistency of the

overall scale consisting of the three subscales with variable

number of items. You can then compute various other

combinations, similar to the D study manipulations in the

previous example.

(1) Generalizability across scales

Set scale random, item fixed. Set number of levels for

scale¼ 1, leave items: scale at 13. This then computes the

average correlation between scale scores.

(2) Generalizability across items within scale

Set scale fixed, item: scale random. Set number of levels for

scale¼ 1, leave items: scale at 13. This then is the average

internal consistency within each subscale.

However, generally, one would report the internal consis-

tency of each scale individually since the number of items and

the specific items vary across scales.

To do this, you would do separate runs for each subscale,

using item as the only facet of generalization, as in Design 1.2,

and using the feature of Screen 9 to change the starting point.

(3) Overall internal consistency, independent of subscales

Simply rerun as Design 1.2, with item having 39 levels.

Note that it is difficult to compare �’s derived from different

scales as � is sensitive to the number of items in the scale.

Multiple facet designs

The introduction of additional facets involves additional

complexity, but no new concepts. The critical steps are to

first identify object of measurement, then label the various

additional facets in the design, identify which are nested

and which are crossed, and then ensure that the sequence of

data in the spreadsheet lines up with the intended design.

Stratification facet designs

One other class of designs that is very common in general-

izability studies in medical education. Particularly for perfor-

mance tests like OSCEs and oral examinations, it is very

common to run the examination at multiple sites over several

days. In these circumstances, each subject can be said to be

nested in a particular ‘‘stratum’’ of a stratification facet (day,

site). To complicate things further, it is very common to change

raters, or in the case of OSCEs, to also change the specific

stations to ensure test security. Thus, both participant (p) and

possibly station and rater are nested in one or more ‘‘strati-

fication’’ variables – site, day, circuit.

GENERAL TIP

G_String and urGENOVA are not currently capable of

dealing with designs when a facet of generalization is

nested in a stratification facet. The next version (G_String

V) will have this capacity.

DESIGN 4.1. You are running an OSCE which is taking

place in two different hospitals. Students (p) are randomly

assigned to one hospital or the other. At each hospital the

same 12 stations are used. Three circuits are run at hospital

A; for a total of 36 students and 4 circuits at hospital B,

for a total of 48 students. Each station has a station –

specific checklist with anywhere from 12 to 27 items.

This is a very typical OSCE setup identifying the facets

from slowest (supraordinate) to fastest (subordinate). The first

R. Bloch & G. Norman
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stratification variable is hospital (h) with 2 levels, then

circuit : hospital (c : h) with three and four levels. Then

participant : circuit : hospital (p : c : h). Crossed with this is

station (s) and item : station (i : s).

Data need to be laid out consistently with this hierarchy,

likely with one physical record per applicant or per station. As

before, caution must be exercised to ensure that the records

are grouped according to this hierarchy.

The screens will now look like:

Design 

Step 3 Abbrev. Crossed Nested 

Participant p • 

Step 4 4 

Design 

Step 5 Facet name Abbrev. Crossed Nested 

Hospital h • 

Circuit c • 

Station s • 

Item I • 

Subj.
Population 

Number of
facets 

Step 6: Drag ‘‘c’’ to ‘‘h’’, ‘‘p’’ to ‘‘c : h’’ and ‘‘i’’ to ‘‘s’’.

Step 8 h 2 

c : h 3 4 

p :  c : 

 h 
12 12 12 12 12 12 12 12 12 12 12 12 

s 12 

i :  s 14 22 17 ... .... ... ... .. .. .. .. .. 

The G study output automatically generated on Screen 12

would look like:

Generalized across 

Step 12 Facet name Different Random Fixed Levels 

Participant per 

circuit 
• 12 

Hospital 2 

Circuit per hospital 3.4 

Station • 10.7 

Item per station • 18.5 

Note that (a) hospital and circuit do not have an dot. This

signifies that they are stratification facets. (b) The number of

levels for station and item : station contain fractions, which

reflects the unbalanced design (p. 27).

The resulting G coefficient is the overall test reliability.

D studies can be conducted using the strategies discussed

previously to examine the average inter-station correlation

(S random, I fixed, n(s)¼ 10.7) or the internal consistency

among items within station (I random; S fixed n(i)¼ 18.5).

What about the stratification facets? Basically, any variance

due to the stratification facet represents a bias, so that one

circuit or hospital is, on average, harder or easier than another.

The hope or expectation is that these variances will be small.

If participants are judged relative to others in the same

stratum, this variance is of no consequence, as reflected in the

G coefficient for ‘‘relative error’’. However, if absolute inter-

pretation is placed on scores, variance due to strata is a source

of error. Therefore, it has to be included in the absolute error’’

calculation.

DESIGN 4.2. You are running an OSCE which is taking

place with residents at two levels. Residents (r) are either

PGY1 (36 residents) or PGY4 (48 residents). Residents

go through the OSCE 12 at a time, with all residents at each

level together. Each station has a station – specific checklist

with anywhere from 12 to 27 items.

This design is deliberately set up to be identical in layout to

the previous study. The only difference is the meaning

attached to one stratification facet. In the previous example,

hospital was the supraordinate facet, and the expectation

(or hope) was that this would contribute no variance. Any

variance due to hospital was treated as error variance which

would confound interpretation of scores. Thus the absolute

error coefficient best represented the overall generalizability.

In the present case, the expectation is that difference in

educational would be large, amounting to a test of construct

validity. The statistical test can be easily extracted from the

G_String ANOVA table. By including, education in the design,

the G coefficient is then determining the ability of the test

to differentiate among residents within an educational level,

which is completely appropriate. This is obtained from the

relative e coefficient.

Nested designs

There is one final class of designs that is very common in

generalizability studies in medical education. This is the

situation where there are multiple and variable numbers of

ratings on the object of measurement, with rating nested in the

object of measurement (g : d) designs. One example is teacher

ratings, where students in each class rate their teacher. Student

is nested in teacher, and number of students will likely vary.

Peer assessments of practicing physicians, called ‘‘360� eval-

uation’’ or ‘‘multi-source feedback’’ is another – different peers

with different numbers of observations for each physician.

Typically these are not the only two facets, since often ratings

are on multi-item questionnaires, so the design would be peer

nested in doctor crossed with item. Another common variant

is the so-called ‘‘mini-CEX’’ where each student is observed
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on a number of occasions by her supervisor(s), and again,

typically each student has different supervisors.

Frequently these designs can have very many observations.

One study involved over 1000 physicians rated by 17,000

peers. Another was based on a teacher evaluation system

at a large university and had 65,000 observations on 1700

teachers. To handle these studies in previous versions of

G_String is very tedious as the number of observations in each

nest had to be entered manually. However, with G IV, all one

need do is assign a unique index to each teacher or physician

and another unique index to each rater, creating two column

variables. G IV will read these indices and automatically create

the correct number of levels in each nest.

There is one common variant of this design. Frequently

the same rater may be involved in multiple ratings of the

subject. For example, with students in community clinical

rotations, each student may receive multiple observations

and ratings from the same rater. This is handled in G_String

simply by creating a third ‘‘sequence’’ index which is unique

for each rating, so that the design becomes g2 : g1 : d

(sequence : rater : student).

While this design can be analyzed, extreme caution must

be exercised in interpretation. The problem is that with

multiple ratings from each rater, rater variance (lenient –

stringent) is confounded with subject variance. In the extreme

case, where each subject is rated by one rater, different for

each subject, rater and subject variance are completely

confounded. One can obtain high G coefficients, but the

value is biased upwards since this results from variance due to

rater and variance due to subjects.

As a heuristic rule, G_String issues a cautionary message

if the average number of (nested) raters per subject is less

than three.

GENERAL TIP

With designs where facets of generalization (raters) are

nested in facet of differentiation, exercise extreme caution

in situations where there are multiple observations from

individual raters.

DESIGN 5.1. You are collecting data from your undergrad-

uate program to assess teacher effectiveness. You have

seven undergraduate courses, with numbers of students

varying from 12 to 145. Although this is not strictly true,

assume in this example that students are different in each

course. These ratings are done after random lecture,

so ratings are available for varying numbers of lectures

per teacher. The form has 11 items.

This is a g3� g1 : g2 : d study, where the facet of differen-

tiation is teacher, the facets of generalizations are lecture,

student, and item. Typically, there would be one physical

record for each rating with 11 ratings. To analyze in G IV, the

ratings should be identified with three indices – teacher,

lecture, and student, in that sequence. Data must be sorted in

ascending order on each of these indices.

The screens will now look like:

Design 

Step 3 Abbrev. Crossed Nested 

Teacher t • 

Step 4 3 

Design 

Step 5 Facet name Abbrev. Crossed Nested 

Lecture l • 

Student s • 

Item I • 

Subj.
Population 

Number of
facets 

At Steps 4 and 5, a ‘‘column’’ box will also appear on the

right. You will indicate in what column on the record the index

for teacher, lecture, and student is located. For the item facet,

which is multiple observations on each record, you can either

leave column blank and enter number of items at Step 8,

or insert ‘‘�1’’ and G IV will compute the number of items.

If there are items within scales, on the same record, you can

simply enter the number of levels of each at Step 8.

Step 6: Drag ‘‘l’’ to ‘‘t’’, ‘‘s’’ to ‘‘l : t’’.

At Step 8, G IV will automatically generate the number

of levels for t, l, and s (and I if column is �1)

The G study output automatically generated on Screen 12

would look like:

Generalized across 

Step 12 Facet name Different Random Fixed Levels 

Teacher • 7 

Lecture: Teacher • 3.2 

Student: 

Lecture : Teacher 
• 17.9 

Item • 11 

Note that the number of levels for lecture and student

contain fractions, which reflects the unbalanced nested

design (p. 27).

Caution

Once again, we emphasize the potential for bias in the

design as a result of confounding between rater and

teacher (g facet and d facet). If, for example, ratings of all

lectures for each teacher were done by a single paid

student in the class, then rater variance is confounded with

teacher variance and coefficients are interpretable.
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Summary

In this section, we worked through a series of real-world

examples, typical for what one commonly encounters in

educational practice.

Conclusion

In this Guide, we have tried to introduce G theory through

the use of a step-wise practical approach, using examples

commonly found in the world of medical education. We have

no doubt that many readers find the theory difficult to master

but with the help of this guide, plus G_String, a program

specifically designed to aid researchers in the use of G theory

and some worked examples in the appendices, we hope that

the subject is more clear. They say ‘‘practice makes perfect;’’

we hope through this Guide you ‘‘practice’’ G theory and we

have been of help in assisting you in mastering the subject.

Declaration of interest: The authors report no conflicts

of interest. The authors alone are responsible for the content

and writing of this article.
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Notes
1. The authors, both amateur cabinet makers, adhere to the

maxim: measure twice, cut once.

2. Cardinet (1975), Tourneur and Allal were the first to point

out that the ‘‘object of measurement’’ may change, and can

be viewed as one more source of variance.

3. We call this a ‘‘three facet’’ design, referring to the number

of facets of generalization.

4. This rule indicates that the definition of a stratification facet

is that the object of measurement (Person) is nested in it.

5. The term ‘‘stratification’’ is consistent with the terminology

of Brennan, 2001, Section 5.2.
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Appendix A

Getting started with G_String

G_String guides the user through all the steps of setting up a

control file for urGENOVA, feeds the control file to

urGENOVA, and allows the user to inspect and modify the

control file and view the result file via a familiar Windows�

user interface. G_String has built-in help screens. After

urGENOVA has executed, G_String can then compute G

coefficients under user control.

To start G_String, click on G_String.exe or a shortcut.

Then, in G_String click on ‘‘Start.’’

At this point, a submenu with three options is displayed.

‘‘Start fresh’’ is the usual approach, where you are creating

a new G_String run and all facets and all levels of each

facet will be user-specified. ‘‘Start over’’ enables you to do

multiple runs of the same database, in order to perform

or refine D studies that were not done during the initial

analysis. Selecting ‘‘Auto index’’ tells G_String to automat-

ically count the number of levels of each facet. As

described in detail see subsection ‘Specifying the number
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of levels’, this is very useful for unbalanced nested designs

with large numbers of subjects and/or raters.

Step 1: Selecting a title

‘‘Title’’ can be any combination of letters and numbers up

to 80 characters. It is not actually used in the calculations,

so can be omitted, but it appears in the output.

Step 2: Entering comments

Comment fields are optional and are not used in the

calculations but copied into the result (output) file. G_String

adds some comment lines automatically.

Step 3: Defining ‘‘subjects’’

‘‘Subject’’ is the variable describing the people or things

that were measured in the study – the ‘‘object of measure-

ment.’’ This is also the ‘‘facet of differentiation.’’ In Brennan’s

terminology, ‘‘subject’’’ is always labeled p. While in G theory

the designation ‘‘subjects’’ is to some extent arbitrary, usually

reliability or G coefficients are referenced to subjects. Usually,

but not always, the data records are arranged subject by

subject.

‘‘Subject’’ is usually crossed with other factors, such as

item or rater (e.g., a series of students being rated by three

raters on a 10-item test), which would be the repeated

measures in a simple analysis. However, ‘‘subject’’ may also be

nested.

Example: Student may be nested in year (freshman,

sophomore, senior); patient may be nested in gender or

physician practice, and can be both crossed with some

variables and nested with others. G_String easily deals with

this situation. Facets such as year, gender, physician as

above are labeled ‘‘stratification facets’’ and are handled

somewhat differently, as will be described (Brennan 2001,

p. 153).

While, in principle, ‘‘subject’’ may be nested in many

stratification facets, in practice G_String is restricted to four

stratification facets.

If ‘‘auto-index’’ is selected, a column box will also be

displayed. You must specify in which column of the database

the index for the ‘‘subject’’ facet is located; this is described

earlier.

Step 4: Defining the other facets

A ‘‘facet’’ in a design is any factor (in ANOVA jargon)

or variable used to categorize the data for analysis. In G theory,

‘‘subject’’ is always a factor, and is not counted explicitly at

this step. Some variables are crossed with others, some are

nested.

Example: The present example is a six-station OSCE.

There were three circuits (C), with six applicants (A) each.

Applicant is nested in circuit. Station is crossed with applicant

(all applicants do all stations). All stations have two raters,

with the same four items in each station Therefore, item is

crossed with station but rater is nested in station, since

each station has its own raters but items were constant

across stations.

In Step 4, you simply specify the number of facets in

addition to subjects. For the OSCE, this would be four

(circuit, station, item, rater).

As described earlier, any number of facets with fixed levels

occurring on the actual record line can be specified. For this

purpose you leave the column fields empty for these facets.

You will then be prompted to manually enter the actual fixed

levels. If, however, the numbers of levels per record line have

to be determined automatically, the record line may contain

only one facet. In this case enter ‘‘�1’’ in the corresponding

column field.
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Step 5: Naming and specifying the facets

In this step, you name the facets and indicate which are

nested in other facets.

. Give each facet a descriptive name and a corresponding

one-character, unique, lowercase abbreviation.

. If a variable is nested in one or more other variables

(see Step 4), then you change the default ‘‘crossed’’ to

‘‘nested.’’

. In the OSCE example, applicant is nested in circuit, (Screen

3) and rater is nested in station.

. Variables must be listed in the order they are encountered

in the data file, from slowest moving to fastest.

In the OSCE example: if the data have one record per

student, with all data for each station, then the data for each

rater, then the responses on each item, the order of additional

variables would be: circuit, station, rater, item.

Step 6: Facet nesting

In this step, nested factors are ‘‘drag-and-dropped’’ to the

right side so that they are located under the factor in which

they are nested. Every possible combination of crossed facets

is shown in this box, and a facet can be nested in more than

one other facet, e.g., a : ic.

Pick a nested facet up with the mouse cursor from the list

on the left and drop it on the desired combination in the list

on the right.

In the example, applicant has already been dragged under

circuit. Rater will be dragged to station (s)

Step 7: Identifying the data structure

Based on the specification of nested and crossed factors

in Step 6, G_String creates a list corresponding to the order

in which the data are expected to occur.

In the OSCE example, the list would be: subject then station

then rater then item, listed as:

. circuit,

. applicant : circuit,

. station,

. rater : station,

. item.

You now specify which variable corresponds to the

physical record (in Excel, each row). For example, if all data

for one student was on one line, the check is put beside

‘‘applicant : circuit’’ (a:c). If each station is listed on one line

(with all raters and items), the check is beside station.

Step 8: Specifying sample sizes

(If ‘‘auto index’’ is selected, the number of levels of each

facet will be computed automatically and the corresponding

fields will contain the appropriate number of levels. When the

number of detected levels is more than 30, their value will not

be displayed.)

At this step, G_String cycles through all the variables you

specified, and asks for ‘‘sample size.’’ The ‘‘sample size’’ is the

number of levels of each facet and must be 41.

In the OSCE example, ‘‘sample size’’ for station is just

the number of stations.

For nested variables, you must specify the number of levels

at each level of the nesting variable.

For subject, this is the number of applicants in each circuit

6, 6, 6. For rater this will be the number of raters per station,

2, 2, 2, 2, 2, 2.

As a default, once you enter the levels for the first box and

press the ‘‘tab’’ key, G_String will automatically assign the

same number of levels for all boxes. If the numbers differ,

simply overwrite the pre-assigned numbers. The sequence

below illustrates how all the levels are being entered.
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Step 9: Locating and specifying data file

At this step, you first tell G_String where the data file is

located using the usual Browse function. G_String then reads

the first few records from this file. It assumes that the actual

data are listed sequentially beginning at a specific column

of each data line in the data file. Recall that data must be in an

ASCII text file.

You then select the column where the actual data start

by mouse-clicking directly on the first cell containing

data (in any row). urGENOVA will ignore anything to the left

of this.

For tab-delimited files, G_String will create the correct field

width. For fixed field data (no delimiters), first set the start

column as above, then with the ‘‘field width’’ selector, indicate

the width in columns of each individual data field (including

blanks).

In the example, the first two columns are identifiers, so the

cursor is placed in the third column.

The cursor arrow must be located in the first actual data

field, not on the headers.

Step 10: Options

urGENOVA allows you to specify a number of options.

G_String assumes some default values that you do not have to

change, unless you know what you are doing.

NREC: the number of data records that will be printed in the

output file. Useful to check that the data are being read as

expected.

Outname: the name of the output file. This will be assigned a

name and stored in the same directory as the data file, unless

you choose a new name and directory.

ET prints the expected T-term equations.

EMS prints the equations for the expected mean squares as

sums of variances.

SECI .nn is the standard error and ‘‘.nn’’ confidence interval for

the estimated variance component (.nn is a fraction between

0.00 and 1.0, usually 0.95).

SAT is a second confidence interval estimate, due to

Satterthwaite (see the GENOVA manual).

TIME: Time and date of processing will be printed (default

is ON).

NOBANNER Banner will not be printed (default is ON).

R. Bloch & G. Norman

986

M
ed

 T
ea

ch
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
SU

N
Y

 S
ta

te
 U

ni
ve

rs
ity

 o
f 

N
ew

 Y
or

k 
at

 S
to

ny
 B

ro
ok

 o
n 

10
/2

7/
14

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



Step 11: Save control file

You have now completed the specification and generated

a control language file. By default, it is called ‘‘gControl.txt’’

and stored in the same directory as the data file; however,

at this step you can give it a more meaningful name and place

it in any directory of your choice.

Step 12: Calculating variance components

Once you saved the proper control file path, urGENOVA

is executed automatically to calculate the variance compo-

nents and the coefficients of variance for the G study are

generated.

Step 13: Components of variance in G study and D studies

This screen displays the output from the calculation of

the G coefficient, and then permits the user to conduct

repeated D studies. The output follows the convention of

Brennan, in particular the rules for calculation of G coefficients

(4.1.6, p. 109) and the section on Mixed Models (4.3, p. 120).

A brief explanation is required.

Generalizability theory is an extension of CTT. In CTT,

every observation is comprised of a true score or signal, and

error. The reliability coefficient is the ratio of the true score

var(�) to the total variance (var(�)þ var (�)). G theory extends

this formulation by considering that error may have multiple

sources, which we have called ‘‘facets of generalization.’’

Depending on the measurement situation, you may wish

to generalize over some facets (called ‘‘random’’ facets by

Brennan), and keep others constant (called ‘‘fixed’’ facets by

Brennan).

In the OSCE, if we set rater as random and item and

station as fixed, we will compute the equivalent of the inter-

rater reliability. If we set item as random and fix rater

and station, we are computing the equivalent of internal

consistency.

The calculation amounts to moving variance components

between the error term � and the signal term �. Screen 11

displays � and � as well as �, described next.

There is a further refinement in G theory. Sometimes,

we wish to interpret a person’s score relative to those of other

people. In this situation, the fact that some raters may be more

strict or lenient than others, or some items harder or easier,

is irrelevant. This amounts to ignoring the main effects of the

facets of generalization, and only interactions with subject are

included. This is the error term �. However, if we wish to put

an absolute interpretation on scores, we must include main

effects, which is the term � on Screen 12. In turn, the absolute

error coefficient or � contains � whereas the relative error

coefficient or E�2 contains �, see earlier description for further

explanation.

The first automatic output on this screen considers all facets

as facets of generalization. Further, it computes averages over

each facet, based on the sample sizes in the original study.

So the calculated coefficient E�2 is the G coefficient for the

original test.

However, on Screen 11, G_String will calculate G coeffi-

cients with any combination of fixed facets and facets of

generalization, and any sample sizes – so-called D studies –

in order to examine the effect of each facet on the overall

generalizability. You can also calculate the equivalent of

classical coefficients by ‘‘treating’’ one facet at a time as

‘‘random’’ and fixing the remaining facets.

In the OSCE example, if you want to compute the

equivalent of inter-rater reliability in the OSCE, you would:

(a) set item and station as fixed facets and (b) set the

sample size for rater¼ 1. (If you keep sample sizes for item

and station, you are calculating inter-rater for the average

of Ns¼ 6 stations and N1¼ 4 items.) More likely you would

also fix sample sizes for item and station at one to determine

inter-rater reliability for a single rater in one station with

one item.

Generalizability theory for the perplexed
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If you wish to calculate different coefficients (D studies),

simply re-enter the new combination of facets, identifying

fixed facets and facets of generalization, and the new sample

sizes and click on ‘‘compute.’’ The new coefficient will be

calculated and displayed in the screen and in the printout.

Refer to earlier pages and examples in Appendix B for more

detailed explanations.

Note that, in the case of nested variables, the number of

levels is within each nest. For D studies you must keep this

constant across nests so it is a ‘‘balanced’’ design.

In the OSCE study, there are six applicants per circuit and

two raters per station.

Appendix B

Data

Outline

. Data structure

. Data formats

Means, mean-square differences, variances, and variance

components are calculated from actual scores corresponding

to the specific experimental design. The input to G_String,

therefore, is a data-file structured so that the program can

accurately allocate each data item to the appropriate subject

and facet level. This requirement sets relatively strict condi-

tions on the format of the data-file. Any violation of these

restrictions can make the file unreadable or cause errors in the

results.

The data-file is an ASCII text file organized in lines

(rows) and fields (columns). Data have to begin on the first

line. It may not contain title or header lines. Each field is

either empty or contains one score value as positive or

negative, decimal number. Lines are separated by otherwise

invisible ‘‘character return’’ and ‘‘line feed’’ characters. Fields

can be defined either as ‘‘fixed width’’ or ‘‘delimited’’. The

otherwise invisible ‘‘tab’’ character delimits a field. Using

‘‘tab’’ delimited fields makes the data file more resistant to

misreading.

The actual scores do not have to start at the beginning

of each line. The format allows for a fixed number of leading

characters or columns. These can either contain facet index

information or they can be skipped. In nested facets, missing

data are meaningless. In crossed facets, missing data should be

indicated by delimited blanks.

The easiest way to construct a data file for G_String is to

first assemble the data as a spreadsheet file, visually inspect,

and edit it, and finally export or save it as a ‘‘tab delimited text

file (.txt)’’.

It is highly advisable to start the analysis of a new dataset

by first creating a new directory with a unique and descriptive

name and place all corresponding data-, control-, and result-

files in this directory.

Appendix C

Interpreting program output

The computer output contains many more details of the

above calculations and will be described next. This output is

generated when the process of study calculation is finished,

and is created as a ‘‘.txt.lis’’ file in the target directory.

Below is a sample output from the example. Annotations are

in this font. On some computer operating systems you may

have to delete the secondary extension ‘‘.lis’’ to be able to read

the file.

CONTROL CARDS FOR RUN 1

Control Cards File Name: �Temp.txt

mmi2003 dataset

GSTUDY mmi2003 dataset

COMMENT

COMMENT Processing date: 06/06/2010 2:49:22 PM

COMMENT

COMMENT This is a sample run, using an actual empirical

dataset

COMMENT a large number of applicants are being tested in

COMMENT 3 sequential circuits with 6 stations each. each

station

COMMENT employs 2 raters with 4 standard items each

COMMENT

COMMENT

COMMENT% applicant (a)

COMMENT% circuit (c)

COMMENT% station (s)

COMMENT% rater (r)

COMMENT% item (i)

COMMENT

COMMENT The calculated ‘‘Grand Mean’’¼ 4.4010

COMMENT G_String III normalizes scores by subtracting

the Grand Mean from each score

COMMENT

OPTIONS NREC 5 ‘‘*.lis’’ TIME NOBANNER

EFFECT c 3

EFFECT * a:c 6 6 6

EFFECT s 6

EFFECT r:s 2 2 2 2 2 2

EFFECT i 4

FORMAT 30 0

PROCESS ‘‘�Temp.dat’’

R. Bloch & G. Norman
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This is an image of the control card input for urGENOVA

created by G_String in response to user input. Note how

the ‘‘EFFECT’’ lines completely describe the design, with

circuits, applicants nested in circuits (6/circuit), stations,

rater nested in station (2/station.,) and item. The calculated

Grand Mean over all the scores is 4.4010.

INPUT RECORDS FOR RUN 1

mmi2003 dataset

RECORD NUMBER 1

1.599 2.599 1.599 1.599 1.099 0.099 1.599 1.099 �2.401 �1.401

urGENOVA images the data on the first five records. Some

are omitted from this example. The grand mean has been

subtracted from the actual scores.

MEANS FOR MAIN EFFECTS FOR RUN 1

mmi2003 dataset

Means for c

�0.045 0.528 �0.483

Means for a:c

0.089 �0.078 �0.839 �0.214 0.932 �0.161 0.849 �1.339 1.297 �0.318

0.995 1.682 �0.943 �0.672 0.745 �0.016 �1.130 �0.880

Means for s

0.238 �0.283 �0.102 0.207 0.203 �0.262

Means for r:s

0.418 0.057 �0.887 0.321 0.030 �0.234 0.314 0.099 �0.679 1.085

�0.873 0.349

Means for i

0.205 �0.119 �0.047 �0.040

urGENOVA outputs the means for each variable.

Below is the ANOVA table created by urGENOVA. The

format is conventional, except that the right column is

‘‘variance component’’ and is used in the calculation of G

coefficients. (Negative variance components are set to zero

when computing G coefficients.)

ANOVA TABLE FOR RUN 1

mmi2003 dataset

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Effect df T SS MS VC

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 2 16882.85677 147.89583 73.94792 0.10650

a:c 15 17393.52604 510.66927 34.04462 0.58973

s 5 16778.13368 43.17274 8.63455 �0.27757

r:s 6 17005.35069 227.21701 37.86950 0.46282

i 3 16747.93634 12.97541 4.32514 0.01591

cs 10 17075.20312 149.17361 14.91736 0.17605

cr:s 12 17351.61458 49.19444 4.09954 0.02040

ci 6 16898.97569 3.14352 0.52392 0.00179

as:c 75 18021.96875 436.09635 5.81462 0.27813

(continued)

ar:cs 90 18619.43750 321.05729 3.56730 0.82002

ai:c 45 17420.10417 10.45920 0.23243 �0.00642

si 15 16803.64583 12.53675 0.83578 �0.00231

ri:s 18 17044.84722 13.98438 0.77691 0.02484

csi 30 17118.02083 14.16204 0.47207 0.01000

cri:s 36 17420.29167 11.87500 0.32986 0.00711

asi:c 225 18144.87500 69.62934 0.30946 0.01113

ari:cs 270 18845.75000 77.54688 0.28721 0.28721

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Mean 16734.96094

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Total 863 2110.78906

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Grand mean: 0.

Below is the first output from G_String. It is a calculation

of the overall test generalizability, so (a) there are no fixed

facets, and (b) the number of levels of each facet

corresponds to the original study.

The allocation of individual terms is based on the

specification of random or fixed facets. This is according

to the rules in ‘‘computing G coefficients’’ section,

abstracted from Brennan.

Date and time at beginning of Run 1: Sun Jun 6 14:49:22 2010

Processor time for run: 0 seconds

Computation sequence for G study

‘‘a’’ Differentiation 6.00

‘‘c’’ Stratification 3.00

‘‘s’’ Random 6.00

‘‘r’’ Random 2.00

‘‘i’’ Random 4.00

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Pattern Var. Comp. Levels Signature Rule

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 0.1065 1 s Delta only

a:c 0.5897 1 ds tau only

s 0.0000 (6.0) r Delta only

r:s 0.0386 (12.0) r Delta only

i 0.0040 (4.0) r Delta only

cs 0.0293 (6.0) r Delta only

cr:s 0.0017 (12.0) r Delta only

ci 0.0004 (4.0) r Delta only

as:c 0.0464 (6.0) dr Delta and delta

ar:cs 0.0683 (12.0) dr Delta and delta

ai:c 0.0000 (4.0) dr Delta and delta

si 0.0000 (6.0 * 4.0) r Delta only

ri:s 0.0005 (12.0 * 4.0) r Delta only

csi 0.0004 (6.0 * 4.0) r Delta only

cri:s 0.0001 (12.0 * 4.0) r Delta only

asi:c 0.0005 (6.0 * 4.0) dr Delta and delta

ari:cs 0.0060 (12.0 * 4.0) dr Delta and delta

Results

s2(T) ¼0.590

s2(D) ¼0.303

s2(d) ¼0.121

Er2 ¼0.830

Phi ¼0.661

The first five outputs are shown in Screen 11:

Below is an example of D studies. The user can control

two aspects of the computation: (a) which facets are random

and which are fixed, and (b) how many levels of each. These

are used for different purposes:

Generalizability theory for the perplexed
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Random vs. fixed facets. In G theory, one can compute the

equivalent of classical coefficients such as inter-rater reliability,

internal consistency, and so on, by restricting the analysis,

setting one facet at a time as random, and setting the ‘‘n’’ for

this facet equal to one.

In the example above, to compute inter-rater reli-

ability for a single rating and a single station, one

would declare rater as random, station, and item as

fixed, and set all the levels equal to one. If one

wanted the inter-rater reliability of the total score

over all four items, number of levels of item would

remain four. To look at internal consistency (across

items) item becomes the random facet, rater, and

station fixed, and levels remains at four (since

internal consistency is for the total score, so amounts

to averaging by number of terms).

The number of levels is a matter of judgment, and is based

on whether the reliability is for a single (item, rater, station)

or for the mean across all items, raters, and stations. To

understand how this works, we have taken the above

example and created a number of D study scenarios:

Random
facet(s)

Fixed
facet(s) Nrater Nitem Nstation Interpretation

S R,I 2 4 1 Inter-station reliability of total

score from two raters and

four items

S R,I 1 1 1 Inter-station reliability for any

single item from any rater

S R,I 2 4 6 Inter-station reliability for total

score from two raters and

four items

R S,I 1 4 6 Inter-rater reliability for total

score from four items, six

stations

R S,I 1 4 1 Inter-rater reliability for total

score on any station

R S,I 1 1 1 Inter-rater reliability for any item,

any station

I R,S 1 4 1 Internal consistency (across

items) for one rater, one

station

I R,S 1 1 1 Average inter-item correlation

I R,S 2 1 1 Average inter-item correlation

for mean of two raters

Changing levels – D studies. To this point, we have set the

number of levels as either the original design number or one,

depending on whether we wish to compute reliability for the

single item or the number of levels of the facet in the original

study. We can also vary the number of items at will, to

determine the optimal combination of levels of each facet in

the design. In this case, the interest is in the overall test

reliability, so there are no fixed facets, but we might vary

number of levels at will.

Note that when we proceed with D studies, the design is

balanced by definition, since we input the number of levels of

each facet as a single number. Thus unbalanced designs only

arise in the initial calculation of the G coefficient from the

original data.

For example, are we better to have 6 stations with 2

raters (Nr¼ 2, Ns¼ 6), or 12 stations with 1 rater

(Nr¼ 1, Ns¼ 12)? What do we gain in going from 12

stations to 18?

Computation sequence for D study

‘‘a’’ Differentiation 6.00

‘‘c’’ Stratification 3.00

‘‘s’’ Random 12.00

‘‘r’’ Random 1.00

‘‘i’’ Random 4.00

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Pattern Var. Comp. Levels Signature Rule

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 0.1065 1 s Delta only

a:c 0.5897 1 ds tau only

s 0.0000 (12.0) r Delta only

r:s 0.0386 (12.0) r Delta only

i 0.0040 (4.0) r Delta only

cs 0.0147 (12.0) r Delta only

cr:s 0.0017 (12.0) r Delta only

ci 0.0004 (4.0) r Delta only

as:c 0.0232 (12.0) dr Delta and delta

ar:cs 0.0683 (12.0) dr Delta and delta

ai:c 0.0000 (4.0) dr Delta and delta

si 0.0000 (12.0 * 4.0) r Delta only

ri:s 0.0005 (12.0 * 4.0) r Delta only

csi 0.0002 (12.0 * 4.0) r Delta only

cri:s 0.0001 (12.0 * 4.0) r Delta only

asi:c 0.0002 (12.0 * 4.0) dr Delta and delta

ari:cs 0.0060 (12.0 * 4.0) dr Delta and delta

Results

s2(T) ¼ 0.590

s2(D) ¼ 0.264

s2(d) ¼ 0.098

Er2 ¼ 0.858

Phi ¼ 0.690

Computation sequence for D study

‘‘a’’ Differentiation 6.00

‘‘c’’ Stratification 3.00

‘‘s’’ Random 18.00

‘‘r’’ Random 1.00

‘‘i’’ Random 4.00

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Pattern Var. Comp. Levels Signature Rule

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 0.1065 1 s Delta only

a:c 0.5897 1 ds tau only

s 0.0000 (18.0) r Delta only

r:s 0.0257 (18.0) r Delta only

i 0.0040 (4.0) r Delta only

cs 0.0098 (18.0) r Delta only

cr:s 0.0011 (18.0) r Delta only

ci 0.0004 (4.0) r Delta only

as:c 0.0155 (18.0) dr Delta and delta

ar:cs 0.0456 (18.0) dr Delta and delta

ai:c 0.0000 (4.0) dr Delta and delta

si 0.0000 (18.0 * 4.0) r Delta only

ri:s 0.0003 (18.0 * 4.0) r Delta only

csi 0.0001 (18.0 * 4.0) r Delta only

cri:s 0.0001 (18.0 * 4.0) r Delta only

asi:c 0.0002 (18.0 * 4.0) dr Delta and delta

ari:cs 0.0040 (18.0 * 4.0) dr Delta and delta

Appendix D

Error messages

As an aid in troubleshooting, we provide here a summary of all

error messages of G_String IV. Each error message carries

R. Bloch & G. Norman
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a specific error code in {}. These identify uniquely, at which

location of the code an error was detected.

Error of experimental design:

{E 10} Facets ‘‘Facet 1’’ and ‘‘Facet 2’’ are confounded. You

would not get valid results!

Your experiment is poorly designed. You do not have a

sufficient number of nested data in your study to resolve the

confounding between it and the nested facet. G_String will

deliver results, but they are meaningless.

Errors of design specification:

{D 10} Pattern should not be empty!

You have to define a design pattern for each nesting level.

This error is fatal.

{D 20} G_String IV does not handle a subcomponent of

type ‘‘x:y:z’’.

{D 21} G_String IV does not handle a subcomponent of

type ‘‘x:y:z’’.

{D 22} At present, we does not handle effects of the

type ‘‘x:y:z’’.

{D 24} At present, we does not handle effects of the

type ‘‘x:y:z’’.

{D 25} G_String cannot handle this level of complexity

at present.{x:y:z}.

These error messages all mean the same; they have been

detected at various stages of calculation. G_String IV cannot

handle this specific design complexity. Maybe, at a later stage

we will figure out how to do it and will update the program.

This error is fatal.

{D 30} You must have exactly one facet of differentiation!

{D 31} You must have exactly one facet of differentiation!

Under normal circumstances, you should not get this error,

since following the steps of G_String will automatically prevent

it. A corrupted, re-use control file, though, could give rise to

this error. This error is fatal.

{D 40} Error in naming facets; typically duplication.

Each facet requires a distinct one-character abbreviation.

This error is fatal.

{D 50} The facet of differentiation can only be nested in a

facet of stratification.

Under normal circumstances, you should not get this error,

since following the steps of G_String will automatically prevent

it. A corrupted, re-use control file, though, could give rise to

this error. This error is fatal.

Errors involving the control file:

{C 10} Control file is not well formed!

In order for G_String IV to re-use an existing control file,

it has to be formed according to fixed rules (see p. 23 of the

manual for an example). Specifically, the ‘‘comment’’ tag

of the line specifying the facets must be terminate by a ‘%’

character, i.e., ‘‘COMMENT%’’ rather than ‘‘COMMENT’’.

When you use a control file generated by G_String_III

or later, it is automatically in the correct format. This error

is fatal.

Errors involving the data file:

(F 10} Data file ‘‘file name’’ is not readable.

The format of the file specified is not recognized as a

data file format for either G_String or urGENOVA. This

error is usually due to specifying the wrong file. This error

is fatal.

{F 20} Data does not match facet specifications.

The facet specification doesn’t correspond to the structure

of the data file. Maybe, the asterisk was set to the wrong level

(Step 7). This error is fatal.

{F 30} Insufficient records to calculate grand mean! Empty

line ‘‘xxx.’’

{F 31} Data file does not contain sufficient data.

Either you require too many datapoints, or you dropped

some data from your data file. This error is fatal.

{F 32} Your data file is missing ‘‘xxx’’ values. They have

been replaced with the grand mean.

{F 33} Your data file is missing ‘‘xxx’’ values. They have

been replaced with the grand mean.

These messages indicate that the structure of the data file

is correct, but you have empty data cells. G_String will replace

missing values with the grand mean, which is ok, if only

a small percentage of cells are involved, and they are more

or less randomly distributed through your data file. Otherwise

you have to rethink your design, in order to avoid systematic

errors.

{F 40} Unable to convert ‘‘String’’ to decimal number.

You may have mixed up your files, or left the column titles

in the data file. G_String expects a numerical value, not

characters. This error is fatal.

Generalizability theory for the perplexed
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Internal errors:

{M 10} Crossed facets must have integer levels.

G_String expects that integer levels rather than fractional

levels are specified for crossed facets. This error is fatal.

{M 20} Wrong averaging type ‘‘X!’’

This error should not normally occur. G_String selects the

appropriate averaging types according to rules listed in the

manual and in Brennan. Theoretically, there could be internal

errors that would call up an incorrect averaging type. This error

is fatal.

Errors transmitted from urGENOVA:

{U 10} urGENOVA error: ‘‘message’’

If urGENOVA fails for any reason, it emits an error message

which is displayed by G_String. These errors are usually fatal.

R. Bloch & G. Norman
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