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Abstract

Background: Generalizability theory (G theory) is a statistical method to analyze the results of psychometric tests, such as tests
of performance like the Objective Structured Clinical Examination, written or computer-based knowledge tests, rating scales,
or self-assessment and personality tests. It is a generalization of classical reliability theory, which examines the relative contribution
of the primary variable of interest, the performance of subjects, compared to error variance. In G theory, various sources of error
contributing to the inaccuracy of measurement are explored. G theory is a valuable tool in judging the methodological quality of an
assessment method and improving its precision.

Aim: Starting from basic statistical principles, we gradually develop and explain the method. We introduce tools to perform
generalizability analysis, and illustrate the use of generalizability analysis with a series of common, practical examples in
educational practice.

Conclusion: We realize that statistics and mathematics can be either boring or fearsome to many physicians and educators,
yet we believe that some foundations are necessary for a better understanding of generalizability analysis. Consequently, we have
tried, wherever possible, to keep the use of equations to a minimum and to use a conversational and slightly “off-serious” style.

Introduction Practice points

Although we wrote this monograph primarily for Members
of the Association for Medical Education in Europe (AMEE),
it could be of interest to any serious medical educator, in fact,

e Testing knowledge and performance is a measurement.
e Measurements provide a mixture of true data (signal)
and confounders (noise).

any educator who is involved with the development and o i
. . e Statistical methods like G theory allow us to separate
administration of assessment procedures. i i i ) : )
noise from signal, identify sources of noise, and devise
ways to reduce their contribution to the final results.

e G theory is a powerful method to achieve this goal.

Society, appropriately, is concerned with the professional
competency of physicians, yet it lacks the prerequisite ability

to supervise it. Consequently, it has delegated the responsi- i i
e G theory is an extension of the two-factor, random-

model ANOVA.
e G theory, like any analytical tool, is only useful if it is

bility for quality assurance to the professional colleges and
medical schools. These, in turn, have built up a veritable

“assessment industry”. But, who assesses the assessment? . . . .
accompanied by careful experimental design, planning,

Thus, we have all gradually become increasingly conscious el eyt

of the need for quality assurance of high stakes assessment.

One of the most powerful tools to explore the value of
methods to evaluate knowledge, skills and, possibly, attitudes,

is generalizability theory or as it is more commonly known,
G theory.

Yet, for many of us, G theory is still a black art. Basically,
it (G theory) explores the fundamental question: to what
extent can we extrapolate the results achieved on a limited
sample of test tasks, measured under unique test conditions to
a universe of tasks and conditions, from which the specific test
set has been drawn more or less arbitrarily.

The literature on G theory is no easy fare, nor do tools
for G theory data processing abound. Some four years ago,

we started to develop a computer program — G_String — to
give evaluation practitioners a tool to analyze their data
using G theory. G_String wraps around a command line
program, performing the core calculations, called urGENOVA
(University of Iowa), written by Robert L. Brennan, one of the
leading experts in the field. The name of our software,
“G_String”, has raised more than one eyebrow and academic
firewall concerned with propriety. In fact, the semantics are
quite innocent: “G” stands for generalizability, and “Strings”
are lexical sequences of symbols (letters) which the program
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parses and analyses in order to instruct urGENOVA on how
to perform its calculations and what to do with the results
of these calculations. G_String is freely available and can be
downloaded free from: http://fhsperd.mcmaster.ca/g_string/
index.html at McMaster University.

G_String is not the only computer program of its kind.
Others are available as well, but it is the program we know
best. This is why we have used it as the backbone in this
monograph.

We are not attempting to turn you, the reader, into a hard
core statistician. Rather, we provide an overview of the theory
underlying G theory analysis. For those of you who want to
know more, there are books that offer a relatively painless
introduction to statistics (Streiner & Norman 2008a). For the
more serious among the readers are typical classics (Winer
et al. 1991). For those, who live on the web, there is a
wonderful Statistics portal by NIST (National Institute of
Standards and Technology 2003). Finally, for the more
pragmatic amongst the readers, almost any technical term is
explained in Wikipedia and can be easily found on Google
(www.google.com).

In “Signal and noise” section, we introduce the concept
of statistical noise as well as “signal-to-noise ratio”. “Two-way
ANOVA” section provides an example of a classical analysis of
reliability using simple two-way analysis of variance (ANOVA).
In these first two sections, we emphasize a mathematical
approach. While the reader does not necessarily have to
trudge through the formulae in order to be able to apply the
topics of subsequent sections, it would surely add to a deeper
understanding as it demonstrates how generalizability theory is
an extension of classical test theory (CTT) using mathematical
statistics.

In “Beyond CTT” section, we take a more detailed look
at sources of experimental noise and extend the theory to
multiple factors. We also introduce the basic terminology of G
theory. We abandon the formal mathematical derivation at this
point, and refer the interested reader to appropriate sources.
In “Research design” section, we demonstrate how these
concepts mesh with research design in evaluation. “Designing
your G study” provides a general approach to designing G
studies, i.e., studies to analyze the properties of a given
test. “Computing G coefficients” section explains how G
coefficients are calculated. This is not essential; G_String
performs these calculations, but it may help achieve better
understanding of how the coefficients have been calculated by
the software. “G theory software” section discusses the
available G theory software and explains G_String in more
detail. “Worked example” section provides a medley of
worked examples to illustrate the possibilities.

We have specifically added Appendices A—D which focus
entirely on the use of G_String. Appendix A illustrates how one
goes about analyzing a dataset with G_String. Appendix B is
more technical, it describes the data requirements of G_String.
Appendix C explains the program output and how to interpret
it. Appendix D, finally, lists possible error messages of
G_String and explains their significance.

Since it is easily downloadable and free, we would
recommend that G_String is used at the same time as reading
and using this Guide.

Signal and noise

Outline

e Why G theory?
e The basic idea of signal and noise
e Ratio of S/(S+N)

Why G theory?

You are sitting across the table from the Minister of Health
and her coterie (a small exclusive group of people who share
the same interests). She seems rather tense. No wonder,
she has been getting a lot of criticism lately for the poor quality
of health care services. She is looking for a quick and media-
effective way out. And you, lucky fellow, you are it.

“It’s the low quality of our doctors’ says she. “We have
to introduce better quality control!” With your political
knowledge you inquire: “What did you have in mind?’ She
snuffs and replies: “Don’t you see, half the physicians provide
below average care? We have to stop this/”

There is your mission. How do you determine quality of
care, and how do you remove physicians who are lacking?
While quality-of-care indicators for specific conditions exist,
it is neither practical nor economically feasible to accurately
monitor the overall quality of care for every physician; and
using such indicators in a coercive manner would be politically
out of the question. We are thus left with assessing future
physicians at the transition from education to training and
from training to practice. In a limited way it may be possible to
identify low-end-outliers and, hopefully, prevent them from
entering practice.

Assessing the qualities of future physicians remains a
substitute for controlling actual quality of care. The challenge,
thus, becomes finding appropriate and cost-effective mea-
sures, applying them efficiently, and demonstrating that they
adequately measure competence, and predict future quality
of care. But that raises another conundrum: can physician
competence be measured on a single scale, or does it rather
consist of a basket of individual, independent competencies
which are required in differing proportions for different
specialties and practice conditions? Finally, if competence
cannot be reduced to a single scale, how do you define a
threshold below which progression toward independent
practice becomes impossible?

Ideally, we could plug candidates into a calibrated black
box that provides us with a digital readout of their compe-
tence. If it had a chute for rejects, we would not even have
to pick up the pieces. But, of course it just is not that simple.
A battery of multiple choice questions may be adequate
for testing factual knowledge and maybe some reasoning, but
it does not suffice for testing professional skills which,
unfortunately, constitute a major portion of physician compe-
tence. Skills manifest themselves as purposeful behaviors
appropriate to specific circumstances, and need to be judged
by a knowledgeable observer.

The magnitude of the skills inventory required for the
practice of medicine makes comprehensive testing impossible.
Practical and economic considerations severely limit the
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sample size of requisite skills that can be tested in an exam.
Thus, from the outset a clinical skills examination can only
provide a crude estimate of a candidate’s skill level. The
smaller the test set the cruder the estimate. Since the skills
score requires human judgment, extraneous factors will affect
the result. One of the authors’ centenarian mother reminisces
that she made it a habit to always wear a short red dress for
oral exams; she knew about observer subjectivity!

For any large test involving many candidates and many test
situations (cases, stations, orals), different candidates may
meet different raters and different standardized patients even
if efforts are made to control the clinical case presentation.
There are multiple sources of variability. We have already
mentioned that “medical competence” does not fit on a
simple, one-dimensional scale, but takes on different values,
depending on the specific skill and situation under which it is
estimated. There are other sources of error. A candidate may
function better on one day than another; she may do better
in the morning than in the afternoon. There are also some
structural considerations. Maybe you are testing candidates
from different schools. True, your primary interest is the
competence of individual candidates, but you may also be
interested in the teaching effectiveness of the individual
schools — yet another source of variability. And so it goes.
It is the bane of social sciences that potential sources of
variability are almost unlimited. You are dealing with obser-
vational data, so randomizing extraneous sources of statistical
variability is all but impossible.

And there lies the power of generalizability theory; it allows
you to estimate the contributions of different sources of
variance, as long as you can group your individual measure-
ments appropriately, and you are able to estimate all individual
data items on an identical numerical scale. The variability of
primary interest to you is the differences in estimated
competence between the different candidates — we call this
“the signal”. Any other source of variability constitutes
statistical “noise”. In designing and refining your testing
procedure, you pay attention to the various sources of noise
in order to minimize them.

The basic idea of signal and noise

The related concepts of signal and noise arose originally
during the development of RADAR in WW II Britain. Signal
was what you were interested in; it meant “enemy aircraft
approaching”. Noise meant distraction; it might have masked
a true signal or falsely sent Royal Air Force fighters on a wild
Messerschmitt chase. With the progress of signal theory, this
qualitative approach was soon replaced by much more
quantitative and mathematical methods.

But signal theory is just the special case where statistics
is applied to time series — commonly of continuous electrical
voltage or current. Thus it appears quite natural that such
descriptive terms like “signal” and “noise” became general-
ized. However, instead of defining ‘“signal” as the total
presence or absence of signal amplitude, it became focused
on a defined change in signal amplitude. Before we can
visualize “signal-to-noise”, we have to familiarize ourselves
more quantitatively with the nature of noise.

962

You may be a statistical maven, or like the rest of us,
you might, at times, become confused by the apparent leaps of
faith, statisticians employ. Much of this confusion stems
from the fact that statistics really consists of two distinct
concepts in one wrapper. First, statistics deals with concrete,
real, finite data items, the kind of data items you collect and
explore in your daily work. Statistics tells you how to
manipulate these data. The second concept — much more
abstract — deals with idealized, infinite datasets. What ties those
two concepts together is a theory of how you infer properties
of the infinite set from the finite data items.

Let us assume for the moment that we always employ
the same limited test set for our competence exam: the 10 most
common clinical situations. In this case, test results do not
allow us to generalize to the general competence level of
candidates; only that they can handle the 10 most common
clinical situations. If we want to be able to generalize to a
larger universe of clinical skills, we have to draw our test set
randomly from that universe. But to do so, we have to have
some way of estimating the extent to which the specific
characteristics of the small set of 10 situations may lead to error
in the generalization. To return to our first example, the extent
to which the specific rater, standardized patient, or case may
lead to a biased estimate, or the effect of the time of day, the
school where they are being tested, or any number of other
variables.

Maybe we have got ahead of ourselves. We need to begin
by quantitatively examining the issue of measurement errors in
a simpler situation. Let us start over with just about the simplest
example possible: here is a string and a ruler. Your task is to
measure the length of the string. We will assume that you are
lucky, you own the absolutely accurate reference ruler that
sets the standard for all the other rulers in the world. You
realize that a string is an iffy thing. Its length depends, among
others, on the tension applied. So, you standardize that by
clamping at a uniform tension. Done! Your ruler shows the
string to be 101.0 mm long. But your buddy tries the ruler and
gets 100.5mm. Clearly, a single measurement does not mean
much, no matter how careful you are.' There still remain any
number of factors that might affect your final result, which you
have not taken into consideration. You may want to standard-
ize temperature and humidity, yet still, repeated measurements
result in a range of numbers. There is no way around it, you
have to repeat the measurement process a number of times —
say “N” times.

The finite, concrete dataset consists of the results of your
repeated measurements. The idealized, infinite dataset consists
of a continuum of possible true length values of the string.
The problem is you really do not know the string’s true length.
A central tenet of statistics postulates that you will get the
“true” value only if you measure the object (string) an infinite
number of times. Problem is, that may take you forever, and
you have better things to do.

We have been holding back as long as we could, but we
just have to introduce some mathematics.

Consider the formula:

Xi=pn+e with i=1,... N,
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where X; stands for the concrete #th measurement of string
length, lower case p stands for the unknown, true value,
a specific choice from the idealized, infinite set of possible
values, and the unknown ith error term &; has been drawn
from the idealized, infinite universe error set. Statisticians tend
to use capital letters for finite sets and lower case letters for
infinite sets. If your measurement errors are truly random, the
mean of the error terms tends toward zero as the number N
of repeated measurements grows. As a result, the mean value
of X;, namely

M=

W =X= X

1
n=«
i

I
—

will tend toward the elusive “true” value p with growing N.
But what do we mean by “tend toward?” It means, on average,
the absolute difference between the true value and the mean
of measured values will get smaller and smaller, but cannot
ever be expected to become zero for any finite number of N.
In other words, it is the best estimate for the true value of
under a given number of repeated measurements. Statisticians
will say: the mean is the best, unbiased estimator of the true
value.

Now let us look at the error terms. For each measurement
X;, the error term is just (&) = X; — X, where the pointed
brackets indicate “estimator.” But the individual &; estimates
do not interest us. We need some kind of aggregate for the
error terms. As we have seen above, the estimate of the mean
error term is zero, because the error terms are assumed to have
a symmetrical distribution around the mean.

To stop the positives and negatives canceling each other,
we estimate the squared error (variance) by calculating the
mean-squared error of our measurements:

1 ¥ 2 YN X2 -NxX?
2\ _ L _ i=1“Y
<8i)_N_1;{)(’ X} - N-—-1
ss 5
EEEMS(X)EVHI'(X)EU.

Assuming a normal distribution for the individual
length measurements, MS is an unbiased estimate for &* or
variance. “SS” stands for “sum of squares”, “MS” for “mean
square (difference)” and “df’(equal to N—1 in this case) for
“degrees of freedom” and var(X) is the variance of X. In “two-
way ANOVA” section, we will employ this terminology again.

Let us say a word about the term “degrees of freedom”.
There are various formal definitions in the literature. The
simplest one found in the Wikipedia is: “the number of values
in the final calculation of a statistic that are free to vary’.
In our case, we have N measured values for X; But the
estimated value of p is already fixed. In other words, it is the
best estimate for the true value of p. So you only have N — 1
values left to vary, that is: df = N — 1.

If we are attempting to detect a specific, consistent change
in the variable X, namely AX, we can define the so-called
“effect size” ES as

AX
ES=——-.
o

As a carryover from signal theory, it is common to consider
the power ratio or the square of the effect size and call it

“signal-to-noise ratio” or SNR:

5 AX? AX?
e ==

xX?-x2 o°

= SNR.

Another common indicator for the quality of a measurement
is the so-called “intra-class correlation” (ICC) (Fisher 1925):
SNR

14 SNR

It is the ratio of the variance attributed to the variable
of interest to the total variance, so expresses the proportion
in the variance of the observed scores that is due to true
differences in the variable of interest.

Before we put this section to bed, let us consider the
RADAR example once more. The larger the signal relative
to the noise, or alternatively, the larger the proportion of the
total amplitude that is due to signal, the better your chances of
finding the bad guys. So this means that the closer the ICC is
to 1, the better the ability to detect the signal. An ICC of 1 says
that it is all signal; you have managed to create a perfect,
noiseless detection system. An ICC of 0 says, conversely that
you are unable to find any signal.

We conclude “Signal and noise” section by summarizing
the terms used in estimating the mean and variance of a
random variable:

Example
Term used Symbol Formula string (N=10)
_ 1 &
Mean X N;Xi 10.01 cm
N -
Sum of squares Ss XN XX =0.09cm?
) 577s
Mean square (variance) MS o
Degrees of freedom df N-1
2
Signal-to-noise ratio SNR i
X? - X2
Intra-class correlation ICC T Sl\]S]?VR
coefficient +e
Summary

In this section, we have introduced the scope of G theory as
a tool to examine a variety of confounders in the systematic
assessment of knowledge and competence. We have also laid
a basis for quantitative understanding of signal and noise
contained in empiric data.

Two-way ANOVA

Outline

The simple linear model
Two way ANOVA
How to compute

Numeric example

Now that we have conquered some fundamental statistical
principles and measuring the length of a string bears no horror
anymore, we can graduate to a simple multiple choice test.
Things are kind of the same, but different from “signal and
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noise” section. This section, at first glance may be still a bit
mathematically loaded, but it is not our purpose to turn
you into an expert statistician. Rather, we are trying to illustrate
the lineage of G theory, so you can more easily appreciate its
strengths and limitations.

It is self-evident that easy tests result in higher scores than
difficult tests, and competent students receive higher scores
than incompetent ones. The nice thing about self-evident
truths is that we can hang on to them, no matter what.
However, it is not quite clear how test easiness and student
competence interact. The simplest assumption is that they act
additively. Let us try that and see what we get. We expect,
therefore, that the test score of student “i” on test item “&’
looks somewhat like:

Expected score; , = grand mean + competence;

+ easiness;, + fudge factor; z.

The reason that we need a fudge factor is twofold. Firstly,
we have already mentioned that we have made the assump-
tion of additivity somewhat arbitrarily. It is quite likely that
some interaction between specific test questions and specific
students exists. Secondly, we have lost all kinds of additional
information: the fly that buzzed around student “i” while he
was dealing with item “£&”. And there are many other potential
sources of noise, too numerous to mention.

Unfortunately, no self-respecting journal would accept
an article containing fudge factors. Let us, therefore, make
the above formula more scientifically respectable by renaming
“fudge factor” to “error term” .

eSip = U+ ¢ +ep+ Eip.

There you have it. Does not that look scientific? Instead
of having just a single factor, the string length as in “signal and
noise” section, we now have two: competence (the factor we
are really interested in) and easiness. Our task thus becomes
to solve a whole swatch of similar linear equations:

Xip = () + (ci) + (&) + {&ir),

where X, are the actual scores.
Solving hundreds of simultaneous equations — child’s play!

1 N Nf
= X =X=X
(M NXNf;kX:; i ,
1 Y
<cz>—ﬁfx;Xi,k—X=Xi—X,

where N, and Ny stand for the number of students and test
items, respectively. Now that we have unbiased estimates
for the grand mean, for competences, and for easiness, our
task is almost completed. The only thing left is this pesky
problem of noise.

As in “signal and noise” section, we are not really interested
in calculating the individual error term for each measured
score. Rather, we want to calculate a compound measure of

964

errors attributable to the two sources of error: students and
questions. We will first calculate the total sum of squares:

N, N , X Ny
SSiotal = Z Z()(i,k _X) = ZZXtZ,k — N, x Nf X X2
=1 k=1 i=1 k=1

For the sum of squares attributable to students we get:

N N
SS() =Ny x Y (Xi —X)’=N;y x { Y X} - N, x X?
i=1 i=1
The factor Ny looks confusing at first. But remember,
we actually have to perform the sum over all the scores, so we
do need N; x Ny terms. Similarly, for the sum of squares
attributable to the questions, we get:

Ny Ny
SS(f)=Nex Y (Xp—X)P =N, x{> X3 — Ny x X
k=1 k=1

Since the error sum of squares is equal to the individual
error sums for students plus that of the questions plus the
residual error, we can calculate the residual error sum as

SS(error) =SSl — SS(s) — SS(f).

Getting the mean squares is almost trivial in comparison:

MS(s) = I\?S(_s) 1
ws() = 205
MS(error) = SS(error)

(N, — 1) x (N, — 1)

We are almost home. Just take a deep breath! Remember, in
the “signal and noise” section the variance of string length was
simply equal MS (length). But here we have two factors —
students and questions, so we have to do a “Two way
ANOVA.” Estimating the variance components o2(s), a(f),
and o?(residual) is not computationally difficult.

While the MS(error) gives us the estimate for the variance
component due to residual error, the other two mean squares
are slightly more complicated. For example, MS(s) contains
not only the variance inherent in the differing competence
of students (once for each form) but also the actual error or
residual variance.

MS(error) = o?(residual),
MS(d) = o?(residual) + Nr x o2(s),
MS(f) = o?(residual) + N, x o2(f).
We have finally arrived. We can now calculate estimates for
the different variance components:
o2 (residual) = MS(error),
o2(s) = MS(s) — MS(error)
= —Nf .
MS( f) — MS(error)
N '

o(f) =

Knowing the estimated variance components is nice. But
what do you do with it? The variance component attributable
to the exam questions does not interest us too much at
this point. What we would like to know is: how much of the
observed variance of students’ competence is due to their
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actual competence, and how much is due to measurement
error? Easy:
2 _ o2(s) _ MS(s) — MS(error)

02(s) + o2(residual) ~ MS(s) + (Nf — 1) x MS(error)

0

The variable p?, sometimes called Ep? or “ICC” is a
dimensionless number between 0.0 and 1.0. An ICC of 0 is
bad, very bad. It gives us nothing but noise. An ICC of 1.0
is good, very good. You have reached the Nirvana of an
error free test. Please call the authors immediately and tell us
how you did it. Anything between those limits is realistic.
For high stake exams, you would like ICC to be well over 0.8.
For formative evaluation, values of 0.6-0.7 are more typical.

The ICC is closely related to the SNR mentioned earlier:

,  SNR

SN

To give more realism to the (synthetic) multiple choice test,
we will illustrate how the numerical results could look like in
more detail:

Effect N df Mean SS MS o°
Total 600 1 72.3 4189971.06

Student 60 59 0 2348974.08 39813.12 4328.64
Form 10 9 0 1386800.82 154088.98 2597.18
Residual 531 0 454196.16 855.36 855.36

The ICC is then 4328/(4328 +855) =0.835. The value is
actually quite reasonable. Only 16.5% of the observed variance
of student scores is due to error.

For this fully balanced, crossed design with one facet, the
reliability coefficient tells you all you need to know. The two-
way ANOVA is a powerful tool to calculate the variance
components attributable to students, questions, and residual
error, and to determine reliability as ICC.

But in the real world, there may be many more facets.
G theory provides you with a generalized tool to estimate
variance components under a variety of experimental condi-
tions. Systematically analyzing the variance contribution of
various facets allows you to optimize your assessment tool.
Think of G theory as reliability on steroids, but more about that
in “Beyond CTT” section.

Summary

In this section, we have expanded the discussion of signal and
noise, and introduced a fundamental statistical technique: the
two-factor random-model ANOVA.

Beyond CTT

Outline

e Classical test theory
e What is wrong with classical test theory
e Basic concepts

o The “Object of measurement”

O Facets of generalization

o Stratification facets

The example we have used to date, looking at how 60 students
performed in a simple multiple choice test involving 10 ques-
tions, yielding 600 numbers, was our first foray into the arcane
discipline called “psychometrics”. We calculated an ICC,
which represented the proportion of the total variance in the
numbers that was due to real differences between students.
This is called a “reliability coefticient” and measures the ability
of the measuring instrument, the multiple choice test, to dis-
criminate between high and low scoring students. To remind
you of the formula:

var(students)
1CC

" var(students) 4 var(error)

Note a few properties of this ratio. First, as we mentioned
in “two-way ANOVA” section, it is a number between 0 and 1,
with 0 indicating that all the variability in scores is due to error
or noise alone, and 1 indicating that all the variability is due
to real differences between students. But note that the signal is
not simply a number; it is actually a variance, measuring how
much difference arose between high and low scoring students.
If there is no difference between students — everyone got
9/10 — then the reliability is zero, by definition. So reliability
is not the same as agreement, since if everyone gets 9/10 there
is 100% agreement. Instead it is a measure of discrimination —
in the technical, not sociological, sense; the ability of the
instrument to distinguish between high and low scorers.
One consequence of this formula is that the more homoge-
neous the sample (and population) the lower the reliability, all
other things being equal. So that reliability is only meaningful
when you specify the variance of the population you are
applying it to.

Now let us talk a bit more about the denominator. As we
have seen, it is made up of two variances — variance due to
differences among students, also called true variance and
a second term that we have called “error”. Actually it is a bit
more complicated than that. There are two contributors to the
error term; the “item x student” interaction — the extent to
which some students do well on some items and poorly on
others, and others get different items right or wrong, and also
random error — what might result if we gave exactly the same
items to the students again (assuming they cannot remember
their prior response). In fact, because we only have one
observation in the individual cell defined by each student and
each item we cannot separate the two terms. So as a general
rule, we always consider that the highest order interaction
is the same as the random error term.

There is also potentially a third source of error — systematic
differences between items. This would show up in the analysis
as the “main effect” of item and had a variance of 2597
in the previous example. However, in the circumstances we
described, where all 60 students got the same test questions,
in fact this may be of no particular consequence. If it turned
out that some of the questions were a bit harder, then it just
means that the overall test score was a bit lower, but each
student’s score relative to the 59 other students would be the
same. On the other hand, if we were administering the test on
different days and wanted to make sure the students did not
pass the answers along, we might want to get a new set
of questions for the second day. If we did that, the extent to
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which the overall difficulty of the test changed from day-to-day
(the main effect of item) would be a source of error and would
have to be considered in the reliability. If it did, we would be
interpreting each student’s score in an absolute sense. These
ideas of relative and absolute errors arise again when we get to
G theory, but are fairly easy to comprehend in this simple
example.

This approach to reliability is commonly called “CTT” and
has roots back to a famous book by Fisher (1925), called
“Statistical Methods for Research Workers”. Chapter 8 is titled
“The Intra-class Correlation Coefficient”. However, the basic
ideas predate the book by a quarter of a century, back to
Pearson (1896). The fundamental idea, leading up to the
reliability coefficient, is that every score contains two elements,
a true score and an error score. From this it follows that the
reliability is just true score variance over total score variance,
as we showed above.

What is wrong with classical test theory?

Let us go back to our example of the competence test.
The performance on each task is determined by a number of
factors:

Candidate factors
knowledge;
technical skills;
social skills;
intelligence; and

charisma.
Task factors

required knowledge;

required technical skills;

required social skills;

required problem solving skills; and

personality of standardized patient.
Rating factors

e rater expertise;
e rater severity.

Situational factors

e time of day;
e environment.

True random factor

We could go on and on. In short, there is not just one error
affecting a score; there is a whole bunch of possible errors.

The trouble with CTT is that it is based on this very simple
idea that any measurement has just two parts — true variance
and error variance. But as we have just shown, there are
multiple sources of error — some may be big and some may be
small. But in CTT, we can only deal with them one at a time. So
if we want to look at the effect of raters, we get different raters
to score a bunch of tests and we compute inter-rater reliability.
Or we could get the same rater to do it again, so we have two
times, and calculate intra-rater reliability (note — and a different
one for each rater, since we cannot combine raters and times).
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We might have a number of items on the test, and so we would
calculate an internal consistency (reliability across items). And
on it goes. The trouble is that we end up with a bunch of
numbers between 0 and 1, but that is not really what we need.
What we want to know is what are the big sources of error, so
that we can get a lot of samples of them, and what are the little
sources that we do not have to worry about. But since every
study will typically use a different sample, with different raters
and so on, we have no easy way to compare one to another.

What we really want to do is put all the sources of variance
into one big analysis so that we can see what is introducing
a lot of error and what is not, and run one big ANOVA that
systematically computes all the error variances. We can then,
if we are cunningly clever, determine different intra-class
coefficients corresponding to inter-rater, test—retest, internal
consistency, etc. And that is what G theory does (Cronbach
et al. 1963).

However, in order to break the shackles of CTT, G theory
begins with a new terminology reflecting, at its core, a new
way to view the world of measurement. So here we go:

Basic concepts

The object of measurement (facet of differentiation). Most
measurement situations are like our example, where we are
attempting to see how well a particular instrument can
differentiate between people — students, patients, or teachers.
So our “object of measurement” — the thing we will ultimately
attach a number to — is a person. As a result, most textbooks
(Shavelson & Webb 1991; Brennan 2001) refer to any variance
associated with the object of measurement as “person”
variance.

However, some caution is necessary. If we have people
rating hamburgers or wines, patients rating the food on the
ward, or students rating textbooks, the object of measurement
is actually the hamburger, the ward, or the book. So in these
situations, “persons” can be books or hamburgers.” Also, the
same design may yield different “objects of measurement”
(Allal & Cardinet 19706). So, for example, we may be getting a
group of patients to rate the seriousness of various health
states. If we are interested in obtaining a number for each state,
then the object of measurement is the written health state and
the patient is a rater of the state. On the other hand, perhaps
we are interested in the individual’s optimism or pessimism
about health in general. In that case, the patient is the object
of measurement and the written health state is an item.

To remind researchers that the object of measurement is
not fixed, and not necessarily human, but rather is the thing we
want to ultimately be able to distinguish, Streiner and Norman
(2008b) used a different terminology. They call this the “facet
of differentiation.

Facets of generalization. G theory was developed by
Cronbach et al. in a book published in 1972. A starting point
was the recognition that the “true” score, derived from a
hypothetical population (as we described in “signal and noise”
section) was never observable and could only be approxi-
mated as the average across all the observations. So instead of
clinging to this concept, G theory begins by defining a finite
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“universe” consisting of observations across all the possible
levels of all the factors the researcher is interested in. For
example, if we were interested in estimating the contribution
of raters, occasions, and cases to a measurement of commu-
nication skills, we define our universe in terms of a number
of levels of rater, case, and occasion. So the “universe” score
is the average score of an individual across all levels of all the
factors in this specified finite universe.

We have been calling them “factors”, but the accepted term
in G theory is “facet”. That is, in our study above, there are
three obvious facets — rater, case, and occasion. However,
although the terminology changes and the approach are much
more versatile than CTT, it does retain some of the common
features. In particular, we will still be calculating various ICCs,
which are ratios of variances. And they have the same form
as the traditional ICC, with the numerator representing the
variance of interest (the “true” variance) and the denominator
representing the sum of variance of interest and error variance.
Not surprisingly, if we do a G study with only one facet — say,
raters — the resulting G coefficient is just what would come
out of the classical inter-rater reliability analysis described
in “two-way ANOVA” section. And the interpretation is the
same — a number between 0 and 1 representing the proportion
of the total variance in the observations due to differences
between the things we are trying to measure — the facet of
interest. Like the classical coefficient, it is an index of the ability
of the instrument to discriminate or differentiate between the
things we are trying to measure

As we have already seen, in contrast to CTT, G theory
allows for multiple sources of variance, which Cronbach calls
the “facets of generalization”. These are the facets that we
want to generalize over (obviously). But this too requires a
change in language:

e instead of saying, “What is the inter-rater reliability of this
exam?” we say, “To what extent can we generalize these
exam scores across raters?”’;

e and test—retest reliability becomes “To what extent can we
generalize these scores across occasions?”;

e and then a new one pops up, “To what extent can we
generalize these scores across both occasions and raters?”
which is sort of a test-retest inter-rater reliability.

But here is where G theory acquires its additional power.
We are no longer constrained to the traditional variables like
rater or time. Instead every measurement situation should be
examined de novo by beginning with the question, “What are
the most likely sources of error in this particular measurement
situation?’ If we do this, we are led into considering all sorts
of variables (facets) that are not part of the usual lexicon,
like cases and formats. Second, once these have been defined,
we have essentially defined our finite “universe” of observa-
tions, and can determine the contribution of each facet to
error, as well as the overall ability to differentiate objects across
all levels of the universe.

How do we distinguish between those facets we want
to generalize over (raters, in the case of inter-rater reliability)
and those that we wish to hold constant (occasions, in this
example)? This awaits the calculations, but for the moment, it is
important to note that these have different labels. The facet we

wish to generalize over is called a “random facet of general-
ization”, signifying that we want to look at generalizing to
some random, other level; the other facet(s) are called “fixed
facets of generalization” — we hold them fixed. We will see
in due course how these are dealt with in detail, but the basic
idea is that fixed facets contribute to the variance of interest
(true variance) and random facets contribute to the error
variance. Logically, it is as if the fixed facets replicate the
conditions of the original study and the random facets are a
sample of a “universe” of possible allowed conditions.

Streiner and Norman (2008b) regrettably use a different
terminology. In fact, they use the same terminology for
different purposes. In their lexicon, a “fixed facet of general-
ization,” as defined above, is a “fixed facet”, and a “random
facet of generalization” as above is just a “facet of generali-
zation.” That is, for an inter-rater reliability study, you would
keep “item” as a fixed facet, and rater would be a facet
of generalization. To make matters worse, they reuse the
concept of fixed and random in another context, as discussed
in the “Research Design” section.

Stratification facets. Now if you look in the textbooks on
G theory, you will see that this is all there is. However, as we
developed G_ String, we found that a very common situation
in medical education is not adequately represented by this
three — level world view. Imagine, for the moment, that the
60 students in our multiple choice test actually come from two
classes, with different teachers. Students 1-35 are taught by
Dr A; 36-60 by Dr B. As it turns out A is a much better teacher,
so on average the first 35 students do a lot better than the
other 25. We really have another facet in the design, call it
“classroom”.

What kind of facet is it? Not a facet of generalization —
clearly we are not trying to generalize from a student’s
performance in one class to her performance in the other one,
since she can only be in one class. But somehow it matters,
since the first 35 students are getting a score which is biased
upwards compared to the last 25.

It really is a different kind of facet altogether, which we can
identify by analogy. In designing experiments, we often
sample students in different strata — gender, educational
level, classroom, and school. We are doing the same thing
here, although the intended use differs, but consistent with the
analogy, we will describe these as “stratification facets’.
Again, the specific approach to dealing with stratification
variance will be dealt with later.

Summary

In this section, we have reviewed some basic concepts about
CTT, pointed out its weaknesses, and begun to show how G
theory deals with these problems. The essential difference is
that, instead of simply dividing an observed score into true
score and error, G theory explicitly identifies multiple sources
of error (facets). Facets are of two kinds — the facets of
generalization (errors) and stratification facets (strata or
groups).
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Research design

Outline

e G study research designs
e G coefficients — General form
e Constructing G coefficients
o Absolute vs. relative error
e D studies — G coefficients for multiple levels

G study research designs

We have talked a lot about G theory and its relation to variance
components — at least at a conceptual level. Tt is now time
to get a bit more practical. In “two-way ANOVA” section, we
showed how to compute true and error variances for a simple
CTT design; what we might call in G theory a “one facet”
design, referring to the single facet of generalization. As you
recall, we used repeated measures ANOVA, with a single
repeated “within-subject” factor. In G theory, we take the
same basic approach, but extend it by introducing additional
repeated measures in the design.

Let us go back to the assessment of communication skills.
We will do it as many people do, by creating an Objective
Structured Clinical Examination (OSCE), where the student
goes from room to room interviewing standardized patients,
moving on every 10 min or so. And when she leaves the room
that standardized patient completes some kind of communi-
cation skills rating. Let us say we have 10 stations. If that is all
there was, we could treat the whole thing as a simple reliability
study and use CTT, as we did in “two-way ANOVA” section.
We would have 10 repeated observations on each student, and
we would set it up as a one-factor repeated measure ANOVA.

But let us recast the whole thing as a G study. To begin
with, the object of measurement is straightforward — student.
That is, after all is said and done, we are interested in seeing
how well the test differentiates among students — consistently
identifies high and low scoring students. Following our earlier
lead, let us assume that we have three sources of error — facets
— of interest: raters, cases, and occasions.® We will include all
of these in a single design. We have the 10 cases (stations)
in the original design. We also want to see how much error
is coming from different raters, so we would perhaps include
a second rater (another standardized patient perhaps) as an
observer in each station. We now have a two-factor repeated
measures design, with rater (2 levels) and station (10 levels) as
the two facets of generalization. Finally, perhaps student skills
vary from day-to-day. To test this, we might actually create a
2-day test, so they do five cases on one day and then again
two weeks later. Now, we have a three-factor ANOVA with
day, case, and rater as facets of generalization.

There is a subtle difference between these facets that has
a major impact on the design and analysis. In ANOVA
terminology, day, station, and rater are all said to be crossed
with student; by that we mean that every level of day or rater
occurs at all levels of student — each student does both days, all
five cases, and all raters. In the design above, station and day
are crossed as well, since each case occurs on both days.
However, rater is nested in station, since each rater occurs at
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only one station. We could have made station nested in day by
using 10 different stations, 5 on day 1 and 5 on day 2. And we
could have, with difficulty, crossed rater with station by, for
example, video-taping each performance and having the same
two raters watch all students and all stations.

We can also introduce stratification facets into the design.
Commonly, OSCEs are done with multiple circuits so a large
number of students can be “processed”. If we did that, then we
could imagine that the first 10 students do circuit 1, 11-20 do
circuit 2, and so on. In that case, assuming all circuits use
the same stations, then rater and student are nested in circuit.
And since student is the facet of differentiation, circuit
becomes a stratification facet.

Why does all this matter? As we increase the number of
factors/facets, we not only increase the number of main or
overall effects in the design, but we also introduce various
interactions. For example, a station x day interaction is a
measure of the extent to which the scores assigned to different
stations are different on successive days. A student x station
interaction shows whether different students find different
stations easy or hard. The magnitude of various interactions
provides useful information about sources of errors.
In addition, all of these interactions have to be dealt with
individually in constructing G coefficients, as we will begin
to see in the following section.

However, we can only have an interaction between crossed
facets. As a counter-example, while we can have a stu-
dent x day interaction (do some students do better on day 1
and some on day 2?) we cannot have a student x circuit
interaction (do some students do better on one circuit than
another?) since each student can only be in one circuit. And we
cannot have a rater x station interaction for a similar reason.
Nested facets are written as student : circuit and rater : station to
make this distinction.

Finally, we can use this example to illustrate another bit
of technical jargon. So far, the design is balanced — there are
10 students per circuit for all circuits, 5 cases, 2 raters, etc.
But suppose some students were overcome with nerves and
dropped out, so that the number of students per circuit varied
from 7 to 10. We would now say the design is unbalanced.
While G theory software is capable of dealing with unbalanced
designs of considerable, though not unlimited complexity, the
multipliers for individual terms in the G coefficients becomes
more complex. We will get into the details later.

G coefficients — General form

To this point, we have discussed various kinds of facets — the
object of measurement, which is roughly equivalent to
“subjects” in CTT, facets of generalization, which are equiv-

» o«

alent to the various other facets such as “raters,” “items,”
or “occasions” in CTT, and “stratification facets” that have
no classical equivalent. We now describe general strategies to
combine these into G coefficients.

Every G coefficient has the same form of an intra-class
correlation as described in “signal and noise” and “two-way
ANOVA” sections. As before, it is a ratio of the “true” variance
to the sum of “trueterror” variance. What differs is the
individual variance components that go into the numerator
and the denominator.
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We have already distinguished between the variance due
to the object of measurement (and there is only one of them)
and the facets of generalization. For consistency with Brennan,
we will always describe the facet of differentiation as p for
“persons.” But as in the OSCE example, we can have any
number of facets of generalization limited only by imagination
and logistics. In turn, these can lead to distinct G coefficients,
so that a single G study design can theoretically create a large
number of coefficients. Some may be analogous to classical
coefficients, such as inter-rater, test—retest, or internal consis-
tency; others may have no classical equivalent. For a crossed
design with 2 facets, we can have 3 G coefficients; for 3 facets,
7 coefficients, for 4 facets, 14 coefficients, etc. Of course not
all these are interpretable or useful. For obvious reasons,
we cannot come up with standard names like “inter-rater”
to describe these various coefficients. Instead, we adopt a
standard nomenclature, in which we distinguish between fixed
facets of generalization and random facets of generalization.

To see how this works, let us return to the OSCE again.
We have P(erson) as the facet of differentiation, S(tation),
D(ay), and R(ater) as facets of generalization. Below is the
complete set of possible G coefficients, with classical equiv-
alents where they exist:

Facets of
generalization

Object of
measure Fixed Random

Classical

Question equivalent

P D,S R To what extent can | Inter-rater
generalize from one
rater to another?

To what extent can | Internal
generalize from one consistency
station to another?

To what extent can |
generalize from one
day to another?

To what extent can |
generalize from one
rater on one station
to another rater/
station?

To what extent can |
generalize from one
rater and day to
another?

To what extent can |
generalize from the
same rater on one
day and station to
another?

P D,S,R  To what extent can |
generalize across all
facets to a compa-
rable overall Test?

P DR S

Test-retest

While the generalizations over two facets do not make
much sense, the last coefficient certainly does. It basically says,
“Given the way we have defined the universe of observations,
considering all the sources of error, this is the coelficient
indicating how well we can generalize any score to another
parallel test” Further, the other coefficients can be directly
compared to determine large vs. small source of error, since
all are based on the same sample of subjects, cases, raters, etc.

In short, we can use the information from the G study
diagnostically to identify major and minor sources of error.

How are the coeftficients constructed? We construct a signal
term and a noise term, very much like the preceding
discussion. The signal, labeled t (tau) by Brennan, consists
of all the variance components (main effects and interactions)
due to the object of measurement and all the fixed facets.
The noise term labeled either A (DELTA) or § (delta)
comprises all main effects (A) and interactions (A and &)
that have the facet(s) of generalization in them (we will go into
this in more detail later).

The distinction between A and § relates to the absolute or
relative error coefficients. If we wish to interpret a person’s
score relative to all other persons in the study, the main effects
of the facets of generalization (e.g., the main effect of “item”)
are irrelevant; it amounts to moving everyone up or down by
the same amount. So we would omit any main effects of G
facets from the error term. Conversely, if we want to place an
absolute interpretation on a person’s score (John’s IQ is 122),
then any systematic (main) effects of item or rater introduce
error into this estimate. These main effects (and the interac-
tions between G facets) now go into the error term.

If we are computing the absolute error, we use A; if we are
calculating relative error we use §. Basically, A contains all the
relevant main effects; § does not. So, conceptually, for each G
set of facets of generalization and differentiation, we have two
coefficients:

E,o2 =t/(t+9)
O=1/(t+A)

relative error,
absolute error.

Unfortunately, Streiner and Norman (2008b) use a different
approach. They approach the issue of absolute vs. relative error
one facet at a time, and each facet is identified by the user as
either absolute or relative as part of the data input. For example,
if we were analyzing a clinical skills rating form, to be
completed by different observers, we might well decide that
we can ignore the main effect of item, since all students are
rated on the same items. The main effect then just shifts every
person’s score up or down by the same amount. In Brennan’s
terminology, we would say that we would use relative error,
since this amounts to excluding the main effect of item from the
denominator. On the other hand, if each student is rated by a
different supervisor, then any main effect of rater would affect
different students differently, so should be included — absolute
error. Brennan does not allow this individualization, although
in “computing G coefficients” section, we will discuss how
to create coefficients reflecting these differences. Streiner and
Norman (2008b) do allow it in their description, however they
use different terminology. If the main effect should be included,
this amounts to declaring a “random factor;” if not, the effect is
declared a fixed facet. The terminology originates in the idea of
fixed or random effects in ANOVA.

Some other examples of absolute and relative errors. In a
self-completion scale (learning style or depression) we would
likely use relative error, since the items are always the same.
If we had an essay test where people could, for example, write
on three topics of the five listed, we would use absolute error,
since the main effect of essay is reflected in differences
on individual scores.
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D studies — G coefficients for multiple levels

In CTT, one useful extension is something called the Spearman—
Brown formula which is used to determine the reliability of a
test that is “&” times as long as the original test. That is, if the
study computed the reliability of a 10-item test, we could use the
Spearman—Brown to estimate how reliable a 20, 40, or 100-item
test would be. The basic strategy amounts to dividing the error
variance term by “k” (analogous to the relation between the
standard deviation and the standard error of the mean).

G theory goes two better. Because we are simultaneously
considering error variance from multiple sources, we can also
vary the number of levels of each source. In this example,
having determined the generalizability of a single observation
over raters, stations, and days, we can first determine the
generalizability of the test we used by dividing error variances
containing day by 2; containing rater by 2, and containing
station by 5.

But the next extension is even more interesting. Once we
have the variance components, we need not stick to the levels
in the original study. We can insert whatever “ns” we choose.
In this decision or D study, we can then ask optimization
questions like, “Given that we have 2 x 2 x 5=20 observa-
tions available, what combination of observations yields the
maximum generalizability?” We could investigate a number of

possibilities:
Rater Station Occasion
2 5 2
4 5 1
1 10 2
2 10 1
5 2 2
2 2 5

When you think about it, the general strategy would be to
spread the observations out so that facets associated with large
error variance are divided by larger numbers and those with
small error variance are divided by small numbers. But you do
reach a law of diminishing returns, so that typically the optimal
generalizability occurs with intermediate values.

Summary

In this section, we have introduced the reader to the basic
concepts of G theory. We have shown that it is an extension of
CTT that deals with multiple sources of error simultaneously.
We have illustrated how this permits much greater precision
in examining and reducing the sources of error variance in
a measurement situation.

Designing your G study

Outline

e What is the dependent variable?

What is the “object of measurement?”

What are the facets of generalization?

What (if any) are the stratification facets?
Which facets are nested and which are crossed?

How do I specify the number of levels of each facet?
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Designing G studies is a bit tricky, but it basically follows the
same steps you would use in any research study. You must
figure out your dependent variable, independent variables,
and research design. There are constraints on the choice and
configuration of variables, which we will get to in due course.
But the steps remain the same.

What is the dependent variable?

What are you trying to measure? Is it a score on a written test?
A rating scale filled out by a supervisor? Are you interested in
biological measurements like body mass index or range of
motion? G theory is pretty well indifferent to the actual
measurement. In particular, this is the right time to deal with
some longstanding myths about measurement.

Myth 1: Rating scales are “ordinal measurements” and
you have to use non-parametric (like Spearman’s rbo or
chi-square) to analyze them.

If this were so, G theory would be out of business, since it is
based entirely on ANOVA which is a “parametric” procedure.
This particular axiom has been around as long as we have
been doing measurement (we, the authors) which is a pretty
long time. And it has been disproved again and again for
almost as long (Norman 2010).

Myth 2: Your data bave to be normally distributed or you
cannot do ANOVA.

You do NOT have to have normally distributed data. Anyone
who says so is revealing his ignorance of basic statistical
theory. ANOVA and similar methods are based on distributions
of means, and the central limit theorem says that, for
moderately large sample sizes (>10), the means will be
normally distributed regardless of the actual distribution of
the data.

So you can do G theory analysis on just about any kind
of measurement. In fact, you can even do G theory on sets
of 0’s and 1’s (like dead =0, alive =1). This sounds bizarre
in the extreme; you are supposed to use Cohen’s Kappa
(Cohen 1960). However, in 1973, Fleiss and Cohen showed
that Kappa and the ICC (which we described in “two-way
ANOVA”, and underlies all of G theory) are mathematically
identical. On more than one occasion, we have done G
analysis on binary data, computed G coefficients, and reported
them as “‘generalized kappa’s”.

It sounds like there are very few constraints, and there are.
But there is one that really matters. As we have already
described, G studies depend on repeated measurements
across different conditions (e.g., three raters, two times), to
partial out the error variance. And all the variance derives from
deviations from the overall or “universe” mean. For this to
happen, it must be meaningful to average across all conditions.
So multiple raters using the same scale is fine. But if we were
looking at, for example, the student’s total score in a course,
where the individual subscores were, (a) 2 assignments based
on 10-point scales, (b) group participation out of 5, (¢) a
midterm out of 20, and (d) a final exam out of 60; it would be
nonsensical to average these. If you converted everything to
a percent, let is say, then statistically it may be defensible.
But even so, conceptually, does it make sense to talk about
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the generalization from an assignment score to group partic-
ipation? Perhaps; but all may be samples of an underlying
trait called “statistical competence” — the issue requires careful
thought.

What is the “‘object of measurement’’?

This seems about the easiest question of all. What are we
trying to attach the measurement to? In the above example, it is
student; we are trying to figure out how well our various tests
can differentiate among students (tell them apart). But perhaps
because it seems so straightforward, every so often someone
gets it entirely wrong. For example:

(a) We want to get patients to rate their satisfaction with
their experience on our inpatient ward. The object of
measurement is “ward”. Patients are raters of the ward.
And the study, as conceived, is undoable, since with
only one ward you clearly cannot work out the variance
between wards.

(b)  We get our friends (7=10) to rate a number of red
wines (n=5) on four seven-point scales.

There is always one and only one object of measurement
per analysis. Once this is decided, you can now take the first
step in creating the study design and database. Imagine the
spreadsheet that will contain all the data. The start is to assign
one line (row) to each subject (object of measurement), so that
all observations for each subject will then fill in successive
columns. Subject ID can be created for each row; the exact
numbering approach is irrelevant as it is not needed by the
analysis software. Most G studies will follow this “one line per
subject” strategy, but not all. We will identify the exceptions
later.

Because the object of measurement is usually a person,
most books on G theory reserve the symbol “p” for the object
of measurement. We will do the same when we get to
computing G coefficients.

What are the facets of generalization?

Well, now is the time to let your imagination run wild. What
are the possible sources of error in any estimation? Some
obvious ones come easily to mind — raters (of communication
skills, say) hence inter-rater reliability; items (on a test) —
internal consistency; times or occasions, and test-retest
reliability. But if we have a test comprised of multiple cases,
a much more important source may be the cases. Inter-rater
reliability is usually around 0.7-0.8, however study after study
shows that inter-case reliability is closer to 0.1-0.3. That is why
OSCEs work; they assess competence by averaging over
anywhere from 10 to 20 cases or stations.

Other facets are less obvious. Often rating scales have
multiple subscales — quality of life may be comprised of
physical, social, and emotional functions. These dimensions
can be viewed as a facet of generalization as well. Different
experimental conditions may be a facet; for example, to what
extent can we generalize a rating of a surgical resident’s
suturing skills from a static simulation to an actual patient.

There is an obvious upper limit in that we can only make
a limited number of assessments before our subjects’ rebel.
So you should try to arrive at a list that encompasses all the
likely large error sources. Once we have identified these
facets, we are well on the way to designing the study. But first
we must examine one other kind of facet.

What (if any) are the stratification facets?

In the Research Design section, we discussed the idea of
stratification facets. These arise when the facet of differenti-
ation (usually persons) is “nested” or “blocked” in some other
variable. Examples abound:

(@) Tests may be conducted at different locations or
on different days, so student is nested in location
or day.

(b) Patients may have different severity of disease, so if we
are seeking a measure of anxiety or depression, we may
want to stratify patients by severity.

(¢0) We may be conducting a validity study where we will
examine whether senior students perform, on average,
better than junior students; student is stratified in
educational level.

Returning to the database, we can envision the stratifi-
cation facets as additional columns. These can be identified
by some ordinal index, most commonly 1, 2, 3,....
G_String requires that all subjects within a particular
stratum occur together. So the first 71 rows may be from
the first stratum, the next 72 rows, from the second stratum,
and so forth.

Which facets are nested and which are crossed?

We defined “nested” and “crossed” in “research design”
section, but let us review. A facet “A” is crossed with “B” if
each level of A occurs at all levels of B; it is nested if each level
of A occurs only at one level of B. So what, exactly does that
mean? It comes clear with a few examples.

(a) An inter- and intra-rater reliability study in radiology.
Three raters examine 50 chest films on one occasion and
again two weeks later. There are two facets — rater
and occasion. Since each rater is present on both the first
and second occasion, rater is crossed with occasion.

(b)  Forty students go through an OSCE with 10 stations,
each with 2 raters. Unlike most OSCEs, all stations use
the same four-item rating form with Likert scales. There
are three facets — station, rater, and item. Rater is nested
in station, since the same raters cannot be present at all
stations (they could, we suppose, if raters and students
went along together from station to station. But this
design would completely confound rater differences
with student differences and would be a very bad idea).
Item is crossed with station, since all stations use the
same items. If it were the more common checklist
specific to each station, then item and rater are both
nested in station.

(©) Seven teachers of different sections of a first-year
psychology course are rated by their students on the
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same rating scale. Teacher is the facet of differentiation,
and here student (rater), a facet of generalization, is
nested in teacher since each student belongs to only one
section. But item (on the scale) is crossed with teacher,
since all teachers are rated on the same items.

(d) Fifty patients complete a quality of life scale twice 2
weeks apart. It contains three subscales: physical func-
tion with 12 items, social function with 8 items, and
emotional function with 6 items. There are three facets
of generalization — time, (2 levels), subscale (3 levels)
which are crossed (all subscales occur on both times),
and item, which is crossed with time but nested in
subscale, and has 12, 8, and 6 levels.

From these examples, it is evident that we can have various
kinds of nesting — one facet of generalization nested in another
facet of generalization, (b and d) or a facet of generalization
nested in a facet of differentiation (¢). Further, nested facets
may have the same number of levels in each nest (two raters
per station in B) or different (raters in ¢; items in d). If it is the
same number, it is called a “balanced” design; if not, an
“unbalanced” design.

One thing we cannot do, a limitation of urGENOVA, is have
a facet of generalization nested in a stratification facet (such as
students at different hospitals having different OSCE stations).

Specifying the number of levels

How do we deal with unbalanced nested designs?.  Setting up
a crossed design is easy. In the wine-tasting study we have
5 wines x 10 raters x 4 items. We would likely just create a
single row for each wine and spread the 10 x 4 =40 ratings
across 40 columns.

Balanced nested designs are also easy. In example (a)
above, we have a total of four facets and all but rater are
crossed: student (40 levels), station (10 levels), rater (2 levels
in each of 10 stations), and item (4 levels). Again, we
would likely just layout the data in one record per student,
with 10 X 2 x 4=80 columns. Alternatively, we could have
one line (row) per station, so that the first line is student 1,
station 1; line 2 is student 1, station 2,.... Line 11 is
student 2, station 1.

In nested designs, when G_String gets to asking for the
levels, it will create as many boxes as there are nests (in this
case, 10). When you input the first value (2) it will
automatically create the same number in all the remaining
cells. If the design is balanced, then all levels are now
specified. However, if the design is unbalanced, (i.e., the
number of raters per station varies) then you can overwrite
these automatic values.

There is another way, however. Situations arise where
there are large numbers of “nests”. In one study, there were
15,000 patient ratings of 1000 physicians; the number per
physician varied from 2 to 35. In another, students rated
lectures from different faculty members; the total number of
ratings exceeded 27,000 and varied from 1 to 55. These are
both situations where rater (patient or student), a facet of
generalization, is nested in teacher or doctor, the facet of
differentiation. If we were to do the problem manually, we
would have to enter over 1000 two digit numbers into
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G_String, with real possibility of error. The alternative is that
G_String will do this automatically. We simply create an
index for teacher or doctor (an index for rater is not
necessary) and ensure that there is one record per rater and
all record are sorted in ascending order, so all ratings of
doctor 1 occur first, then doctor 2, then doctor 3, and so
forth, G_String then automatically generates counts of the
numbers in each nest.

We can use the same automatic facility if we have a
nested, unbalanced facet with multiple observations on each
record. For example, we get people leaving hamburger shops
to rate each burger on a single seven-point scale, and we get
from two to seven ratings. The facet of differentiation is
“Burger;” and there is one facet of generalization, rater. If
these two to seven ratings are all on the same row, G_String
can automatically count how many ratings there are for each
burger.

Summary

If you follow these steps, you will now have all the information
you need to design the G study and to devise the format of the
database.

Computing G coefficients

Outline

G coefficients

General rules

Rules for creating 7, §, and A

Rules for creating the divisor for each facet
Absolute, relative, and mixed error coefficients

Coefficients for nested designs

In the last section, we conceptually worked out the design
of the study. It is now ready to be analyzed; the specifics of
how G_String is set up for analysis are described in the
following two sections. Strictly speaking and from a purely
practical point, you do not actually need to read the
following explanations. However, if you are suffering from
an irrepressible need to understand what you are doing, here
it is. In this section, we will go through the theory of
calculating G coefficients. The seven steps of generalizability
analysis are:

(1) formalizing the problem;

(2) organizing the data,

(3) calculating group means;

(4)  calculating mean-square differences for groups;
(5) estimating group variances;

(6)  estimating variance components for effects; and
(7)  calculating appropriate ICCs.

Steps 1-6 represent standard analysis of variance
approaches. Steps 3-6 are actually being calculated by
urGENOVA within G_String with no fuss, so we need not go
into much further detail. The specifics are all handled
in standard statistics texts that deal with repeated measures
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ANOVA. The preceding sections gave you an overview.
However, to go from variance components to G coefficients
in Step 7, we are treading onto unfamiliar territory. Most of the
details have been worked out by Brennan, and what follows
is a direct interpretation of his theories. We have added
some extra theory around stratification facets, which we will
describe in due course.

To begin with, let us remind you of the general form of the
G coefficient:

var(signal)

" var(signal) + var(error)

What happens in G theory is that, although the total variance
(var(signal) 4+ var(error)) remains the same, as we make some
facets fixed and other facets random, we actually change the
apportioning of this variance to signal and error. To make
the algebra a bit more efficient let us redefine the terms,
consistent with Brennan. Signal is called t, and error is called §
if it is relative or A if it is absolute (See “research design”
section). So the general form of the G coefficient, in Brennan
terminology, is:

B var(t)
" var(t) + var(A or 8)

We now have to work out what specific variance components
(main effects and interactions) go into each of t, A, and §é.
In the rules below we develop a framework that applies to
any design. It is based in part on Brennan’s (2001) rules on
p.122 of his book.

Rules for assigning types of facets

Rule 0*
Components of variance result from three sources:

(a) the object of measurement (facet of differentiation), p.
There is only one p (for ‘person’),

(b) facets of stratification,” S, S5.... . These are of the form
p:81,S,, defined in Screen 4 of G_String, and

(o) facets of generalization: Gy, G,, Gj .. ..

Rule 1

Facets of stratification (§) appear in ANOVA (and eventually
in G_String), but cannot be facets of generalization. Facets
of stratification can be recognized by the fact that they
provide containers for a nested object of measurement (facet
of differentiation).

Rule 2

Facets of generalization, either nested in or crossed with p, are
specified as of two types in the calculation of G coefficients:
random facets K; and fixed facets Fj. These are specified
in Screen 12 (and can be changed by the user on successive
calculations). In the intitial run run, G_String automatically sets
all facets of generalisation to random.

Rule 3
Nesting of variables may arise in several different ways and
are handled differently according to the rules to follow.

(@) p:S; — by definition, p can only nest in S; These are
handled in Rule 1.

For example, when programs run an OSCE, it is very
common for students to be nested in hospital, day, or
circuit. National examinations may have candidates nested
in city.

(b)  Gip — facets of generalization can be nested in the
object of measurement.

For example, students’ ratings of teachers, or patients’
rating of doctors, where each student or patient has only
one teacher or doctor, but each doctor or teacher may have
multiple ratings by different patients or students.

(0 GiG; and G;:G;Gy — facets of generalization can be
nested in other facets of generalization, such as items
nested in OSCE station.

One example is an OSCE using checklists, where each
station has a different content-specific checklist. Another is
a case-based written examination, where each case may
have several questions, so question is nested in case.
Questionnaires with subscales often have item nested in
subscale.

Another example would be items within subscales (e.g.,
verbal reasoning, analogies) in an IQ test. Or individual
questions nested within cases in a written patient manage-
ment test.

Note: Nesting of facets results in elimination of certain
interactions in the ANOVA, but these are handled automat-
ically by urGENOVA. There are also implications for the
division by “n” in D studies.

Rules for creating the variances of t, §, and A
Rule 4 (Brennan, 2001, Rule 4.3.1, p. 122).

var(t) = var(p, including p : S)
+ var(all p x F,, interactions not containing any R; )
+ var(all main effects of form F; : p not containing

any R;).

Explanation: The general strategy is that t contains the object
of measurement and all ils interactions with fixed facels.
The reason bebind this rule with respect to nested variables is
that with fully crossed design, t contains all interactions
between p and F but not the main effect of F. With nested
design, the variance due to nesting (e.g., var(Fi:p)) actually
contains the p x F; interaction so is in T term.

When a facet is a facet of generalization, its main effect
will be in A. However, when it is a fixed facet, (if it is not
nested in p as below), the main effect does not move to t, see
Brennan (2001, section 4.4.1). He states that ‘fixing a facet
affects which variance components contribute tot and § but it
does not change their sum.” However, in the example it DOES
change sum of t and A since, when facet is random its main
effect is in A but when it is fixed, main effect is not in t.
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All effects that contain the facet of differentiation but no
random facet of generalization contribute to o(1).

Rule 5 (Brennan, 2001, Rule 4.3.3, p. 122).

var(8) = var(all terms containing p and R;},
including specifically all terms of form
PXR xRR:pp xR : FpxF;: Rjpx F; xR;).

Explanation: The error term consists of all terms containing
the random facels), R. The reason bebind this rule with
respect to nested variables is that, with fully crossed design, §
contains all interactions between p and R, With nested
design, the wvariance due (o nesting (eg., var(R:p),
var( p x Fi-‘Rz)) actually contains the px R; interaction
(Ri+ R;x p) in the first case, px Fi+ px F;x R; in the second
case and, therefore, belong into the error term.

All effects that contain at least one random facet of
generalization and interactions between the random facel(s)
and the object of measurement, p, contribute to var(s).

Rule 6 (Brennan 2001, Rule 4.3.2, p. 122).

var(A) = var(all terms containing R; )
+ var(all terms containing Sj,
specifically including all main
effects of R;, all interactions of form p x R;)
+ var(all interactions between R; and other
facets, e.g., RiF and R;Ry)
+ var(all terms containing S; to left of
colon including main effect of S)
+ var(all interactions between §;, and
G facets; but excluding terms where

§; is to the right of the colon).

Explanation: All effects that contain at least one random facet
of generalization and all effects that contain a stratification
Jacet (unless the S facet is to the right of the colon) contribute
to var(A).

Stratification facets are of two types — those that might be
termed ‘“experimental,” where there is an anticipation that
there will be a large main effect of the stratification facet
(e.g., educational level) and those that are part of the design,
but the expectation is that there would be no effect of S
(e.g., day, circuit, in an OSCE). For experimental strata:
(a) the remaining facets are crossed (every stratum gets the
same measures (for example, all persons get the same test
items)) since this is the only way that one can test hypotheses
about differences, (b) the RELATIVE ERROR term is appropri-
ate, as generalization is within facet. For design facets, the
strata may contribute error in interpretation of particular
scores, so the appropriate term is the ABSOLUTE ERROR term.

Rules for creating the divisor of each facet
in the G coefficient

Rule 7
For balanced designs, the divisor of each facet in a termin t, 8,
or A (except for terms involving p or §) is the number of
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levels of the facet in the term. For terms in p or S the divisor
is always 1. For every interaction term in t, 8, or A, the divisor
is the product of the divisors of the facets making up the
interaction. Thus a term of the form G x H will be divided
by the product of the divisors of the individual terms.
So for crossed designs, terms like g x g, will be divided
by 14 x ng, For nested facets of the form g;:g, the divisor

is also 7141 X ng.

For balanced designs, the divisor for each facet of
generalizability is the number of levels of the facet. For p
and S facets, the number of levels is always one. For nested
facets of form g:g, the divisor is 724 X 74.

Unbalanced designs are of three types, and each requires
different treatment.

Type 1: p:S (Person nested in a stratification facet)

We have already dealt with this situation above. The
divisor for a stratification facet is always one.
Type 2. G:p (Facet of generalization nested in person)

In this design, at least one facet is nested within the object
of measurement.

A very common example is student ratings of teachers,
where each student is in one classroom, so student is
nested in teacher. “Multi-source feedback” is another;
a physician seeks ratings from a number of patients and
colleagues. Patients are nested in physician.

In this case, the G coefficient is divided by the number of
levels of person (which is set at one) x the average number
of levels of rater, which according to Brennan is computed as
the “harmonic mean” — basically the average of the (1/7)
terms, one for each p.

n
~ /4
ng = .
&) €1
Lo

For unbalanced designs of form G:p, the divisor is

the harmonic mean of the number of observations at each
level of G.
Type 3: G,:G, (One facet of generalization nested in
another)

This situation, where one facet of generalization is
nested in another, is encountered quite frequently. Some
examples:

— a case-based test, where each case has different ques-
tions (and different numbers of questions),

— a questionnaire with different questions in each
subscale, and

— an OSCE, with different checklists with different num-
bers of items, in each station.

In this situation, as in balanced designs, there is an “7”
associated with the appearance of G,: G, and another asso-
ciated with G,. For Gy, the “sample size” is simply the
total number of observations of G,, which Brennan calls “72,”
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(pp. 219, 232). For a balanced design, this is just 7241 . 2 X 1.
For an unbalanced design, it is:

ny = E Ngl:g2
g2

For example, if 5 subscales had 2, 4, 5, 7, and 11 items
each, n, =29.1If 5 subscales had 3 items each, 7, would be
5x3=15.

However, the imbalance in G, also affects the denominator
of G,. According to Brennan (2001, p. 232), whenever G,
appears, the variance will be divided by 7,5, which equals:

2
ny

Ngp = —=—5—-
& 2
Zgznglng

In the above example, this equals 29%/(2*+4*+5*+
774+ 11%)=841/215=3.9.

Type 4 G:p:S, G G,:p:S (Facet of generalization nested in
person nested in facet of stratification)

This design is an extension and combination of Type 1 and
Type 2. Person is nested in one or more stratification facets
and at least one facet is nested within the facet of
differentiation.

As in Type 2, this may arise from a situation where students
in a class rate their teacher, or employees in a company
rate their supervisor. However, now the facet of differen-
tiation is also nested (e.g., teacher within school or
supervisor within company).

As before, the divisor for terms involving § is always 1,
since each person can only occur at one level of S. Similarly,
for the facet of differentiation, p, the G coefficient is divided
by 1. And as before for the facets of generalization nested
in the stratification and differentiation facets, the divisor is the
harmonic mean.

Thus in the G: p: Sdesign, the specific terms are S, p: S, and
G:p:S. Variance due to S and G:p:S would be in A term;
only G:p:S would be in the § term. The divisors for these
terms in the G coefficient are §/1, p: §/1, and G: p: §/ 7, where,
as before, 7, is the “harmonic mean” — the average of the (1/72)
terms.

In the G,G,: p: S design, the specific terms are S, p: S, G :
p:S, Gy p: S and GGy p: S As in the single G facet case,
divisors for p and for § are 1; any term involving a facet of
generalization (G) will be divided by the harmonic mean of the
n's contributing to the variance. And the product term G, G, : p:
Sis divided by the product of the two harmonic means.

p:S g: S multiple stratified facets

There is one common design that cannot be handled in
urGENOVA and, therefore, G_String. It is often the case
that tests may occur at different sites or on different days.
If different sites use different forms (or, more commonly,
different raters) then, strictly speaking, the G facet is nested

in the S facet. In our formalism, this is a p:§ g: S design.
urGENOVA does not handle this case. Consider what would
happen if we found a difference between sites. This could
arise either because students at site A are better than those
at site B, or raters are more lenient at site A than site B. There
is no way of disentangling those two. Similarly, if there is no
difference, the two sites could be equal, or any difference
in student competency could be compensated by opposite
differences in rater leniency These ideas are elaborated in
Keller et al. (2010).

Absolute error, relative error, and mixed error
coefficients

In “research design” section, we discussed the conceptual
difference between the absolute error coefficient and the
relative error coefficient, where the former included all main
effects in the error term A, and the latter include no main
effects in the error term 8. However, the situation may arise
where it makes sense to include some main effects but not
others. For example, if a group of medical charts are being
audited by peer review using a standard form with 10 items,
it may make sense to include the main effect of rater, since
different charts may well be rated by different raters, so any
rater bias may not be identifiable. On the other hand, since all
raters are using the same checklist, the fact that some items
may be systematically harder or easier than others is irrelevant
to score interpretation.

This is not done automatically in G_String, but it is not
difficult to use the variance components produced by G_String
to create mixed coefficients. It also commonly emerges that
the absolute and relative error coefficients are very similar,
in which case further refinement may be unnecessary.

Summary

In this section, we have explained the rules for conducting G
study analyses and for generating G coefficients for any
(permitted) class of design.

G theory software

Outline

e From theory to software
e Overview of G_String

As we have seen previously, analysis using G theory
involves a number of steps:

(1) formalizing the problem;

(2) organizing the data;

(3) calculating group means;

(4) calculating mean-square differences for groups;
(5) estimating group variances;

(6)  estimating variance components for effects; and
(7)  calculating appropriate ICCs.
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There is no fundamental reason why any of these steps
could not be performed by hand using nothing but paper,
pencil — and endurance. In reality, however, homo iPhone
either forgot how to do mental arithmetic, or she/he does
not have the necessary patience any more. Some or other
electronic gadget, therefore, has to come to the rescue.

Steps 1-4 are, apart from the numerical effort, relatively
trivial. In the case of well-balanced datasets, Steps 5 and 6 do
not pose conceptual hurdles either. What do we mean by well
balanced?

e Facets and population are either mutually crossed, or where
nested, the number of nesting levels in each facet stays
constant throughout.

e There are no missing data.

Things get complicated, when either or both of these
conditions are not met. As long as the imbalance is relatively
minor, we can employ an analogous-ANOVA method.
However, the random nature of actual datasets does not
guarantee that all estimates for variance components come
out positive. The convention for dealing with negative
variance component estimates is to set them arbitrarily equal
to zero, without adjusting the other component estimates
accordingly. Other, more complex methods for estimating
variance components with unbalanced datasets exist. But for
the case of G studies, this does not make a significant
difference.

Most general purpose statistical packages, such as SPSS,
SAS, or MATLAB, can handle Steps 2-6, as long as the
population size and number of facets are small enough.
However, these programs attempt to solve general design
matrices, whose dimensions grow very quickly with sample
size and number of facet levels. As a consequence, calcula-
tions of generalizability parameters for realistic datasets can
quickly become very time and resource consuming.

As a consequence, researchers have developed specialized
computer programs for generalizability analysis since the
1980s. One of the first programs ETUDGEN, developed by
Francois Duquesne at the University of Mons in Belgium
around 1982, is the ancestor of EduG by Cardinet et al. (2010).

One of the pioneers in G theory, Brennan from the
University of Towa, developed GENOVA, a suite of programs
that are generally considered to represent the gold standard
for generalizability analysis and placed them in the public
domain. Included is urGENOVA, a command line program
running in DOS, which calculates univariate, random effect
variance components for moderately unbalanced datasets
employing the analogous ANOVA procedure (Henderson’s
method D).

However, using urGENOVA is not for the faint of heart.
While it performs Steps 3-6 very efficiently, it requires a
control file with a somewhat picky syntax and does not
understand Windows file names. Neither does it perform
Step 7 of the generalizability analysis. For these reasons,
urGENOVA is not used as widely as it deserves. But
duplicating the superb functionality of urGENOVA does
not appear to be very rational. We have, therefore, written
G_String, a user friendly, visual Windows program as a
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wrapper around urGENOVA that takes users relatively seam-
and painlessly through all seven steps.

Early versions of G_String contained only Steps 1-6, but
repeated comments from users motivated us to incorporate
Step 7 as well. Originally, we employed a series of
“IF...THEN...ELSE...” tests. But in view of the proliferation
of experimental models that users wanted to analyze, we now
employ transformational syntax. This not only simplifies
the program, but it will also make it easier, to incorporate
further models in the future.

As shown in “signal and noise” and “two-way ANOVA”
sections, the calculation of mean-square differences involves
taking a small difference of two large accumulated sums.
This type of calculation can lead to large rounding errors.
We have considered it advisable, therefore, to renormalize
the scores by subtracting the grand mean before summation.
This keeps the sums from growing linearly with the number
of items summed up. Consequently, rounding errors remain
confined. This normalization brings another benefit. G_String
ignores empty cells, i.e., missing values in the calculation
of the various sums. This means that missing values are
automatically replaced by the grand mean of scores.
In effect, this solution underestimates the effect due to missing
scores.

G_String has three operating modes:

(1) design and number of the various facet levels have to
be specified by the user,

(ii) design and respective index columns have to be
specified by the user, but the program then determines
the levels automatically, and

(iii)  the parameters for the G analysis have been stored
previously and are to be re-used for a D-analysis.

The program then leads the user gently through Steps 2—7
with a series of dialogs. A title for the dataset and descriptive
remarks are stored. Design parameters and location of the
data file are solicited and some options can be specified.
The program then generates the control file required by
urGENOVA. Temporary copies of this control file and the
appropriate data file are placed in a special directory contain-
ing urGENOVA. The program then hands control over to
urGENOVA. After completion of Steps 3-06, urGENOVA
generates a result file (extension “lIst”) which G_String
uses to calculate the ICCs. The results of Step 7 together
with an explanation of the logic are copied into the result
file as well.

The final results appear both on the screen as well as in the
output file. After the G study has been completed, any number
of D studies can be performed by entering the number of
relevant facet levels and facet modifiers into the appropriate
field and clicking on the “D study” button.

Summary

In this section, we have discussed a variety of computer
techniques and programs used to calculate generalizability
coefficients. We emphasized G_String, a program freely
available at McMaster University, because we are most
intimately familiar with it.
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Worked examples

In this section, we describe a number of common designs
ranging from simple, classical one factor reliability designs
reformulated in G theory nomenclature, to complex multi-facet
nested designs. We have obviously not exhausted the possi-
bilities, but rather have attempted to identify and provide
examples of some of the more common designs.

The intent is to demonstrate how each design is formulated
in the notation of G_String. We describe each design then
reformulate the design in G theory language. We describe
any specific requirements for the format of the input data, and
the sequence of inputs to the screens required to specify the
design. Finally, we show how to iterate values on Screen 12 to
conduct a variety of D studies.

One-facet designs

DESIGN 1.1. Inter-rater reliability

A clinical researcher examines clinician judgment of
severity of illness for patients with congestive heart
failure. She locates complete records of 75 patients, and
distributes these to three respiratory physicians, who
rate each case on a 0-100 scale, where 100 is “Perfect
Health.”

This example is a typical design for CTT. However, for
illustrative purposes, we will recast it as a G theory study.
The facet of differentiation is patient; the single facet of
generalization is rater. The design is crossed.

The input screens would resemble:

Design

Step 3 Subj. . Abbrev. | Crossed | Nested
Population

Patient p .

Number of
facets

Step 4

R e e

Raters r .

T 3

The G study output automatically generated on Screen 12
would look like:

Generalized across

. 75

Patient

Rater . 3

Note that the computed G coefficient is for the average of
all raters. To calculate inter-rater reliability for a single rater,
you enter “1” as levels for rater, and rerun.

Generalized ¢ S
Patient . 75
Rater . 1
GENERAL TIP:

Often people distinguish between agreement on nominal
variables, which should be analyzed with Kappa or
weighted Kappa, and reliability with measured variables,
which can be analyzed with ANOVA methods and intra-
class correlations. However, Fleiss and Cohen (Fleiss &
Cohen 1973) showed the two methods are mathematically
identical. This means that you can use the power of G
theory even with data like 1=dead, 2= Alive, see Streiner
and Norman (2008b, Health Measurement Scales, 4th ed.,
pp. 187-188)

DESIGN 1.2. Questionnaire

The researcher administers a questionnaire on “learning
style” with 25 questions and “Strongly Agree” — "Strongly
Disagree” and seven-point scales to a sample of first year
medical students (2=125). He analyses the data to
calculate the internal consistency reliability (Cronbach’s o)

Again, this can be handled with CTT; however, we will cast
it in G theory framework. The facet of differentiation is
“student” (s) with 125 levels and the facet of generalization is
“item” (i) with 25 levels. Typically the data would be laid out
on a spreadsheet with 125 lines, and 25 columns. Input screens
would look like:

Design

Subj. Abbrev. | Crossed | Nested
Population

Student S .

Number of

facets
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I .

Items

1 25

The design is formally equivalent to the previous design.
The G study output automatically generated on Screen 12
would look like:

Generalized across

. 125

Student

Ttem . 25

However, in this case, no further analysis is necessary.
Internal consistency is the reliability of the average score
or total score across all items (Streiner & Norman 2008a,
pp. 88-93) which is the G coefficient computed automatically.
We could then do D studies varying number of items to
determine the effect 7 reliability.

DESIGN 1.3. Teacher rating

A researcher examines the reliability of teacher ratings.
The analysis is based on the total score over five items,
with five-point scale “Agree” — “Disagree” responses.
There are five teachers involved in the study, with each
teacher responsible for a different section. Varying num-
bers of students completing the ratings — teacher 1 — 12
students; teacher 2 — 17 students; teacher 3 — 9 students;
teacher 4 — 15 students; teacher 5 — 22 students.

This design introduces a new concept — nested facets.
Student (s) is nested in teacher (1); since each student can
appear with only one teacher. The design is also unbalanced —
different numbers of students per teacher.

In laying out the data, it is important to note that, while
each row in the spreadsheet will likely contain the five ratings
of each student, in contrast to the previous examples, the facet
of differentiation is not equivalent to the row. We are
differentiating teachers, and student now is a rater of the
teacher, so student is the facet of generalization. Because
G_String identifies data by location in the database, not
identifier, all records for each teacher must appear in sequence
in the database.

The input screens would now look like:

Subyj.
Population

Step 3 Abbrev. | Crossed | Nested

Teacher t .

978

Step 4 Number of 1
facets
Design
Student S .

Step  6:  You declare the nature of the
nesting in Screen 6, by dragging “s” (on the left) to “t” (on

the right)

Em s

S 12 17 9 15 22

Note the differing number of levels for student at each level
of teacher The G study output automatically generated on
Screen 12 would look like:

Generalized across

. 5

Teacher

Student : Teacher . 13.7

Note the fractional number of levels of student. This
is because the harmonic mean is used for these
calculations (see p. 28). You can proceed to do D studies, to
determine the relation between number of raters and reliabil-
ity by simply overwriting the “levels” in student and
recalculating.

Two-facet designs

DESIGN 2.1. Raters and items

To examine the reliability of the abstract review process
for a recent conference, the chair assembled 30 abstracts
at random, and had five judges rate each abstract on four
items — creativity, methodological rigor, analysis,
practical relevance, each with five-point poor — excellent
scales.

This is a straightforward two facet, crossed design.
However, it is critical to recognize that the “object of
measurement” is not a person (the rater) but the abstract.
The data must be laid out with raters grouped within abstracts —
that is, Abs 1 — Rater 1, Absl — Rater 2, Abs 1 — Rater 3,
Abs1 — Rater 4, Abs1 — Rater 5, Abs2 — Rater 1, Abs 2 — Rater 2,
Abs2 — Rater 3, etc. These may occur on the same or separate
lines (which is handled in Screen 7) but must occur in this
sequence.
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The input screens would now look like:

Design

Step 3 Subj. Abbrev. | Crossed
Population

Abstract

Step 4 Number of
facets

Step 5 Facet name Abbrev. | Crossed | Nested
Rater r .
Item I .

The G study output automatically generated on Screen 12
would look like:

Abstract 30
Rater . 5
Item . 4

G_String automatically computes the G coefficient corre-
sponding to the average score over five raters and four items
(dividing error variances by 5, 4, or 20). You can also modify
this screen to calculate the G theory equivalent of inter-rater
reliability and internal consistency (). To do this, the general
strategy is to set the facet of interest as a random facet and
set the other facets as fixed facets. You then modify the
number of levels of the facets. The basic idea is that the
number of levels of each facet is the number of observations
that will be used to average the error variance, either of
random or fixed facets.

Thus, if you wish to examine inter-rater reliability, “i” is set
as fixed. Then the number of levels of “r” is set to one,
since, as described in Example 1.1, you want to compute the

reliability of a single rater. If you want to compute inter-rater
reliability of the total score, no. of levels of “7” remains at four;
if you want to compute the inter-rater reliability for a single

rating, “7” is set to one. The possibilities, then, are:

Inter-rater — one item:

Generalized across

. 30

Abstract
Rater . 1
Item . 1

Inter-rater — average score:

Generalized across

. 30

Abstract
Rater . 1
Item . 4

Internal consistency (@):

Generalized across

. 30

Abstract
Rater . 1
Item . 4

Average inter-item correlation:

Abstract . 30

Rater . 1

Item . 1
GENERAL TIP

It is always important to be very careful in determining
which facet represents the “object of measurement” or
equivalently, the facet of differentiation. As in the example
above, it is not always the people who are completing the
questionnaire. Serious errors can result. Further, the data
may be analyzed with different facets of generalization,
depending on the question (see Streiner & Norman 2008b,
p. 241, for an example).

DESIGN 2.2. Questionnaire with multiple subscales

A researcher assesses quality of life for a cohort of patients
(n=50) with multiple sclerosis using a quality of life scale
with three subscales — physical — 20 items; social — 12 items;
emotional — 7 items. She examines internal consistency
from the single administration.
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The study is quite common. Essentially, from the single
administration, you can examine internal consistency within
scale and between scales. The facet of differentiation is
“patient” (p) with 50 levels; there are two facets of generaliza-
tion: subscale (s) (3 levels) and item nested in subscale (i:s),
(20, 12, and 7 levels). The data would typically have one
line perpatient, with 39 observations on each. Input would
look like:

NS K] Subj. .
Population

Patient

Design

Crossed | Nested
P

Number of

facets

a

Scale

Item I .

Step 6: Drag “I” from left to “s” on right.

Step 8 P 50
s 3
1 20 12 7

The G study output automatically generated on Screen 12
would look like:

Generalized across

3 50

Patient
Scale . 2.6
Item : Scale . 13

Note the wunusual number of levels for both
scale and item: scale. These formulae are described on
pp. 33-34.

The G coeftficient represents the internal consistency of the
overall scale consisting of the three subscales with variable
number of items. You can then compute various other
combinations, similar to the D study manipulations in the
previous example.

(1) Generalizability across scales

Set scale random, item fixed. Set number of levels for
scale =1, leave items: scale at 13. This then computes the
average correlation between scale scores.
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(2) Generalizability across items within scale

Set scale fixed, item: scale random. Set number of levels for
scale=1, leave items: scale at 13. This then is the average
internal consistency within each subscale.

However, generally, one would report the internal consis-
tency of each scale individually since the number of items and
the specific items vary across scales.

To do this, you would do separate runs for each subscale,
using item as the only facet of generalization, as in Design 1.2,
and using the feature of Screen 9 to change the starting point.

(3) Overall internal consistency, independent of subscales

Simply rerun as Design 1.2, with item having 39 levels.
Note that it is difficult to compare o’s derived from different
scales as « is sensitive to the number of items in the scale.

Multiple facet designs

The introduction of additional facets involves additional
complexity, but no new concepts. The critical steps are to
first identify object of measurement, then label the various
additional facets in the design, identify which are nested
and which are crossed, and then ensure that the sequence of
data in the spreadsheet lines up with the intended design.

Stratification facet designs

One other class of designs that is very common in general-
izability studies in medical education. Particularly for perfor-
mance tests like OSCEs and oral examinations, it is very
common to run the examination at multiple sites over several
days. In these circumstances, each subject can be said to be
nested in a particular “stratum” of a stratification facet (day,
site). To complicate things further, it is very common to change
raters, or in the case of OSCEs, to also change the specific
stations to ensure test security. Thus, both participant (p) and
possibly station and rater are nested in one or more “strati-
fication” variables — site, day, circuit.

GENERAL TIP

G_String and urGENOVA are not currently capable of
dealing with designs when a facet of generalization is
nested in a stratification facet. The next version (G_String
V) will have this capacity.

DESIGN 4.1. You are running an OSCE which is taking
place in two different hospitals. Students (p) are randomly
assigned to one hospital or the other. At each hospital the
same 12 stations are used. Three circuits are run at hospital
A; for a total of 36 students and 4 circuits at hospital B,
for a total of 48 students. Each station has a station —
specific checklist with anywhere from 12 to 27 items.

This is a very typical OSCE setup identifying the facets
from slowest (supraordinate) to fastest (subordinate). The first
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stratification variable is hospital (h) with 2 levels, then
circuit: hospital (c:h) with three and four levels. Then
participant : circuit : hospital (p:c:h). Crossed with this is
station (s) and item : station (i:s).

Data need to be laid out consistently with this hierarchy,
likely with one physical record per applicant or per station. As
before, caution must be exercised to ensure that the records
are grouped according to this hierarchy.

The screens will now look like:

Step 3 Subj.
Population

Participant

Design

Crossed | Nested
Y

Number of

facets

Design

Hospital h .
Circuit © .
Station s .
Item 1 .

Step 6: Drag “c” to “h”, “p” to “c:h” and “i” to “s”.

o R

c:h 3 4

p:c:
(128 RI28 R128 S8 1288 128 BI28 128 S128 128 N1I2A 12

8 12

irs 14 22 17

The G study output automatically generated on Screen 12
would look like:

Generalized across

P.am?1pant per "
circuit

Hospital 2
Circuit per hospit: 3.4
Station . 10.7
Item per station . 18.5

Note that (a) hospital and circuit do not have an dot. This
signifies that they are stratification facets. (b) The number of

levels for station and item:station contain fractions, which
reflects the unbalanced design (p. 27).

The resulting G coefficient is the overall test reliability.
D studies can be conducted using the strategies discussed
previously to examine the average inter-station correlation
(S random, [ fixed, n(s)=10.7) or the internal consistency
among items within station (7 random; S fixed 7(i) =18.5).

What about the stratification facets? Basically, any variance
due to the stratification facet represents a bias, so that one
circuit or hospital is, on average, harder or easier than another.
The hope or expectation is that these variances will be small.
If participants are judged relative to others in the same
stratum, this variance is of no consequence, as reflected in the
G coefficient for “relative error”. However, if absolute inter-
pretation is placed on scores, variance due to strata is a source
of error. Therefore, it has to be included in the absolute error”
calculation.

DESIGN 4.2. You are running an OSCE which is taking
place with residents at two levels. Residents (r) are either
PGY1 (36 residents) or PGY4 (48 residents). Residents
go through the OSCE 12 at a time, with all residents at each
level together. Each station has a station — specific checklist
with anywhere from 12 to 27 items.

This design is deliberately set up to be identical in layout to
the previous study. The only difference is the meaning
attached to one stratification facet. In the previous example,
hospital was the supraordinate facet, and the expectation
(or hope) was that this would contribute no variance. Any
variance due to hospital was treated as error variance which
would confound interpretation of scores. Thus the absolute
error coefficient best represented the overall generalizability.

In the present case, the expectation is that difference in
educational would be large, amounting to a test of construct
validity. The statistical test can be easily extracted from the
G_String ANOVA table. By including, education in the design,
the G coefficient is then determining the ability of the test
to differentiate among residents within an educational level,
which is completely appropriate. This is obtained from the
relative e coefficient.

Nested designs

There is one final class of designs that is very common in
generalizability studies in medical education. This is the
situation where there are multiple and variable numbers of
ratings on the object of measurement, with rating nested in the
object of measurement (g: d) designs. One example is teacher
ratings, where students in each class rate their teacher. Student
is nested in teacher, and number of students will likely vary.
Peer assessments of practicing physicians, called “360° eval-
uation” or “multi-source feedback” is another — different peers
with different numbers of observations for each physician.
Typically these are not the only two facets, since often ratings
are on multi-item questionnaires, so the design would be peer
nested in doctor crossed with item. Another common variant
is the so-called “mini-CEX” where each student is observed
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on a number of occasions by her supervisor(s), and again,
typically each student has different supervisors.

Frequently these designs can have very many observations.
One study involved over 1000 physicians rated by 17,000
peers. Another was based on a teacher evaluation system
at a large university and had 65,000 observations on 1700
teachers. To handle these studies in previous versions of
G_String is very tedious as the number of observations in each
nest had to be entered manually. However, with G IV, all one
need do is assign a unique index to each teacher or physician
and another unique index to each rater, creating two column
variables. G IV will read these indices and automatically create
the correct number of levels in each nest.

There is one common variant of this design. Frequently
the same rater may be involved in multiple ratings of the
subject. For example, with students in community clinical
rotations, each student may receive multiple observations
and ratings from the same rater. This is handled in G_String
simply by creating a third “sequence” index which is unique
for each rating, so that the design becomes g :g,:d
(sequence : rater : student).

While this design can be analyzed, extreme caution must
be exercised in interpretation. The problem is that with
multiple ratings from each rater, rater variance (lenient —
stringent) is confounded with subject variance. In the extreme
case, where each subject is rated by one rater, different for
each subject, rater and subject variance are completely
confounded. One can obtain high G coefficients, but the
value is biased upwards since this results from variance due to
rater and variance due to subjects.

As a heuristic rule, G_String issues a cautionary message
if the average number of (nested) raters per subject is less
than three.

GENERAL TIP

With designs where facets of generalization (raters) are
nested in facet of differentiation, exercise extreme caution
in situations where there are multiple observations from
individual raters.

DESIGN 5.1. You are collecting data from your undergrad-
uate program to assess teacher effectiveness. You have
seven undergraduate courses, with numbers of students
varying from 12 to 145. Although this is not strictly true,
assume in this example that students are different in each
course. These ratings are done after random lecture,
so ratings are available for varying numbers of lectures
per teacher. The form has 11 items.

This is a g3 X g, : 8 : d study, where the facet of differen-
tiation is teacher, the facets of generalizations are lecture,
student, and item. Typically, there would be one physical
record for each rating with 11 ratings. To analyze in G IV, the
ratings should be identified with three indices — teacher,
lecture, and student, in that sequence. Data must be sorted in
ascending order on each of these indices.
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The screens will now look like:

Design

Subj.

. Abbrev. | Crossed | Nested
Population

Teacher t .

Number of
facets

Facet name Abbrev. | Crossed | Nested

Lecture 1 .
Student y .
Item 1 .

At Steps 4 and 5, a “column” box will also appear on the
right. You will indicate in what column on the record the index
for teacher, lecture, and student is located. For the item facet,
which is multiple observations on each record, you can either
leave column blank and enter number of items at Step 8,
or insert “—1” and G IV will compute the number of items.
If there are items within scales, on the same record, you can
simply enter the number of levels of each at Step 8.

Step 6: Drag “I” to “t7, “s” to “l:t".

At Step 8, G IV will automatically generate the number
of levels for t, 1, and s (and T if column is —1)
The G study output automatically generated on Screen 12

Generalized across
—
7

would look like:

Teacher
Lecture Teacher . 32
Student:

. 17.9

Lecture : Teacher

Item . 11

Note that the number of levels for lecture and student
contain fractions, which reflects the unbalanced nested
design (p. 27).

Caution

Once again, we emphasize the potential for bias in the
design as a result of confounding between rater and
teacher (g facet and d facev). If, for example, ratings of all
lectures for each teacher were done by a single paid
student in the class, then rater variance is confounded with
teacher variance and coefficients are interpretable.
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Summary

In this section, we worked through a series of real-world
examples, typical for what one commonly encounters in
educational practice.

Conclusion

In this Guide, we have tried to introduce G theory through
the use of a step-wise practical approach, using examples
commonly found in the world of medical education. We have
no doubt that many readers find the theory difficult to master
but with the help of this guide, plus G_String, a program
specifically designed to aid researchers in the use of G theory
and some worked examples in the appendices, we hope that
the subject is more clear. They say “practice makes perfect;”
we hope through this Guide you “practice” G theory and we
have been of help in assisting you in mastering the subject.

Declaration of interest: The authors report no conflicts
of interest. The authors alone are responsible for the content
and writing of this article.
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Notes

1. The authors, both amateur cabinet makers, adhere to the
maxim: measure twice, cut once.

2. Cardinet (1975), Tourneur and Allal were the first to point
out that the “object of measurement” may change, and can
be viewed as one more source of variance.

3. We call this a “three facet” design, referring to the number
of facets of generalization.

4. This rule indicates that the definition of a stratification facet
is that the object of measurement (Person) is nested in it.

Appendix A

Getting started with G_String

G_String guides the user through all the steps of setting up a
control file for urGENOVA, feeds the control file to
urGENOVA, and allows the user to inspect and modify the
control file and view the result file via a familiar Windows®
user interface. G_String has built-in  help screens. After
urGENOVA has executed, G_String can then compute G
coefficients under user control.

5. The term “stratification” is consistent with the terminology
of Brennan, 2001, Section 5.2.
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To start G_String, click on G_String.exe or a shortcut.
Then, in G_String click on “Start.”

At this point, a submenu with three options is displayed.
“Start fresh’ is the usual approach, where you are creating
a new G_String run and all facets and all levels of each
facet will be user-specified. “Start over’ enables you to do
multiple runs of the same database, in order to perform
or refine D studies that were not done during the initial
analysis. Selecting “Auto index’ tells G_String to automat-
ically count the number of levels of each facet. As
described in detail see subsection ‘Specifying the number
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of levels’, this is very useful for unbalanced nested designs
with large numbers of subjects and/or raters.

Step 1: Selecting a title

“Title” can be any combination of letters and numbers up
to 80 characters. It is not actually used in the calculations,
so can be omitted, but it appears in the output.

Step 2: Entering comments

Comment fields are optional and are not used in the
calculations but copied into the result (output) file. G_String
adds some comment lines automatically.

23 necast 3 arge numbar of applicants are being tested
13 saquensal circuts with & statons each.sach station

Etor 3 ey et of comument. [Th i » semple wn vieg an ackesl svpiical detsset Next
[empioys 2 raters win 4 stancord tsms sach Help

Step 3: Defining “subjects”

“Subject” is the variable describing the people or things
that were measured in the study — the “object of measure-
ment.” This is also the “facet of differentiation.” In Brennan’s
terminology, “subject” is always labeled p. While in G theory
the designation “subjects” is to some extent arbitrary, usually
reliability or G coefficients are referenced to subjects. Usually,
but not always, the data records are arranged subject by
subject.

“Subject” is usually crossed with other factors, such as
item or rater (e.g., a series of students being rated by three
raters on a 10-item test), which would be the repeated
measures in a simple analysis. However, “subject” may also be
nested.

Example: Student may be nested in year (freshman,
sophomore, senior); patient may be nested in gender or
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physician practice, and can be both crossed with some
variables and nested with others. G_String easily deals with
this situation. Facets such as year, gender, physician as
above are labeled “stratification facets” and are handled
somewhat differently, as will be described (Brennan 2001,
p. 153).

While, in principle, “subject” may be nested in many
stratification facets, in practice G_String is restricted to four
stratification facets.

If “auto-index” is selected, a column box will also be
displayed. You must specify in which column of the database
the index for the “subject” facet is located; this is described

carlier.
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Step 4: Defining the other facets

A “facet” in a design is any factor (in ANOVA jargon)
or variable used to categorize the data for analysis. In G theory,
“subject” is always a factor, and is not counted explicitly at
this step. Some variables are crossed with others, some are
nested.

Example: The present example is a six-station OSCE.
There were three circuits (C), with six applicants (A) each.
Applicant is nested in circuit. Station is crossed with applicant
(all applicants do all stations). All stations have two raters,
with the same four items in each station Therefore, item is
crossed with station but rater is nested in station, since
each station has its own raters but items were constant
across stations.

In Step 4, you simply specify the number of facets in
addition to subjects. For the OSCE, this would be four
(circuit, station, item, rater).

As described earlier, any number of facets with fixed levels
occurring on the actual record line can be specified. For this
purpose you leave the column fields empty for these facets.
You will then be prompted to manually enter the actual fixed
levels. If, however, the numbers of levels per record line have
to be determined automatically, the record line may contain
only one facet. In this case enter “—1” in the corresponding
column field.
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Step 5: Naming and specifying the facets
In this step, you name the facets and indicate which are
nested in other facets.

e Give each facet a descriptive name and a corresponding
one-character, unique, lowercase abbreviation.

e If a variable is nested in one or more other variables
(see Step 4), then you change the default “crossed” to
“nested.”

e In the OSCE example, applicant is nested in circuit, (Screen
3) and rater is nested in station.

e Variables must be listed in the order they are encountered
in the data file, from slowest moving to fastest.

In the OSCE example: if the data have one record per
student, with all data for each station, then the data for each
rater, then the responses on each item, the order of additional
variables would be: circuit, station, rater, item.
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Step 6: Facet nesting

In this step, nested factors are “drag-and-dropped” to the
right side so that they are located under the factor in which
they are nested. Every possible combination of crossed facets
is shown in this box, and a facet can be nested in more than
one other facet, e.g., a:ic.

Pick a nested facet up with the mouse cursor from the list
on the left and drop it on the desired combination in the list
on the right.

In the example, applicant has already been dragged under
circuit. Rater will be dragged to station (s)
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Step 7: Identifying the data structure

Based on the specification of nested and crossed factors
in Step 6, G_String creates a list corresponding to the order
in which the data are expected to occur.

In the OSCE example, the list would be: subject then station
then rater then item, listed as:

circuit,

applicant : circuit,
station,

rater : station,

item.

You now specify which variable corresponds to the
physical record (in Excel, each row). For example, if all data
for one student was on one line, the check is put beside
“applicant: circuit” (a:c). If each station is listed on one line
(with all raters and items), the check is beside station.

Mark the item for which the data
file switches nes (records).

Step 8: Specifying sample sizes

(If “auto index” is selected, the number of levels of each
Jacet will be computed automatically and the corresponding
Sfields will contain the appropriate number of levels. When the
number of detected levels is more than 30, their value will not
be displayed.)

At this step, G_String cycles through all the variables you
specified, and asks for “sample size.” The “sample size” is the
number of levels of each facet and must be >1.

In the OSCE example, “sample size” for station is just
the number of stations.

For nested variables, you must specify the number of levels
at each level of the nesting variable.

For subject, this is the number of applicants in each circuit
6, 6, 6. For rater this will be the number of raters per station,
2,2,2, 2,2, 2.

As a default, once you enter the levels for the first box and
press the “tab” key, G_String will automatically assign the
same number of levels for all boxes. If the numbers differ,
simply overwrite the pre-assigned numbers. The sequence
below illustrates how all the levels are being entered.
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Step 9: Locating and specifying data file

At this step, you first tell G_String where the data file is
located using the usual Browse function. G_String then reads
the first few records from this file. It assumes that the actual
data are listed sequentially beginning at a specific column
of each data line in the data file. Recall that data must be in an
ASCII text file.

*  Mame
&) Oata LS doc
@ Fooed_s_controltt
3 i3 contolonls
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You then select the column where the actual data start
by mouse-clicking directly on the first cell containing
data (in any row). urGENOVA will ignore anything to the left
of this.

For tab-delimited files, G_String will create the correct field
width. For fixed field data (no delimiters), first set the start
column as above, then with the “field width” selector, indicate
the width in columns of each individual data field (including
blanks).

In the example, the first two columns are identifiers, so the
cursor is placed in the third column.

The cursor arrow must be located in the first actual data
field, not on the headers.
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Step 10: Options

urGENOVA allows you to specify a number of options.
G_String assumes some default values that you do not have to
change, unless you know what you are doing.

NREC: the number of data records that will be printed in the
output file. Useful to check that the data are being read as
expected.

Outname: the name of the output file. This will be assigned a
name and stored in the same directory as the data file, unless
you choose a new name and directory.

ET prints the expected T-term equations.

EMS prints the equations for the expected mean squares as
sums of variances.

SECI .nn is the standard error and “.nn” confidence interval for
the estimated variance component (.nn is a fraction between
0.00 and 1.0, usually 0.95).

SAT is a second confidence interval estimate, due to
Satterthwaite (see the GENOVA manual).

TIME: Time and date of processing will be printed (default
is ON).

NOBANNER Banner will not be printed (default is ON).
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Step 11: Save control file

You have now completed the specification and generated
a control language file. By default, it is called “gControl.txt”
and stored in the same directory as the data file; however,
at this step you can give it a more meaningful name and place
it in any directory of your choice.
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Step 12: Calculating variance components

Once you saved the proper control file path, urGENOVA
is executed automatically to calculate the variance compo-
nents and the coefficients of variance for the G study are
generated.
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This screen displays the output from the calculation of
the G coefficient, and then permits the user to conduct
repeated D studies. The output follows the convention of
Brennan, in particular the rules for calculation of G coefficients
(4.1.6, p. 109) and the section on Mixed Models (4.3, p. 120).
A brief explanation is required.

Generalizability theory is an extension of CTT. In CTT,
every observation is comprised of a true score or signal, and
error. The reliability coefficient is the ratio of the true score
var(7) to the total variance (var(t) 4+ var (8)). G theory extends
this formulation by considering that error may have multiple
sources, which we have called “facets of generalization.”
Depending on the measurement situation, you may wish
to generalize over some facets (called “random” facets by
Brennan), and keep others constant (called “fixed” facets by
Brennan).

In the OSCE, if we set rater as random and item and
station as fixed, we will compute the equivalent of the inter-
rater reliability. If we set item as random and fix rater
and station, we are computing the equivalent of internal
consistency.

The calculation amounts to moving variance components
between the error term 8 and the signal term 7. Screen 11
displays § and t as well as A, described next.

There is a further refinement in G theory. Sometimes,
we wish to interpret a person’s score relative to those of other
people. In this situation, the fact that some raters may be more
strict or lenient than others, or some items harder or easier,
is irrelevant. This amounts to ignoring the main effects of the
facets of generalization, and only interactions with subject are
included. This is the error term §. However, if we wish to put
an absolute interpretation on scores, we must include main
effects, which is the term A on Screen 12. In turn, the absolute
error coefficient or ® contains A whereas the relative error
coefficient or Ep? contains 8, see earlier description for further
explanation.

The first automatic output on this screen considers all facets
as facets of generalization. Further, it computes averages over
each facet, based on the sample sizes in the original study.
So the calculated coefficient Ep® is the G coefficient for the
original test.

However, on Screen 11, G_String will calculate G coefti-
cients with any combination of fixed facets and facets of
generalization, and any sample sizes — so-called D studies —
in order to examine the effect of each facet on the overall
generalizability. You can also calculate the equivalent of
classical coefficients by “treating” one facet at a time as
“random” and fixing the remaining facets.

In the OSCE example, if you want to compute the
equivalent of inter-rater reliability in the OSCE, you would:
(a) set item and station as fixed facets and (b) set the
sample size for rater=1. (If you keep sample sizes for item
and station, you are calculating inter-rater for the average
of N;=06 stations and N, =4 items.) More likely you would
also fix sample sizes for item and station at one to determine
inter-rater reliability for a single rater in one station with
one item.
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If you wish to calculate different coefficients (D studies),
simply re-enter the new combination of facets, identifying
fixed facets and facets of generalization, and the new sample
sizes and click on “compute.” The new coefficient will be
calculated and displayed in the screen and in the printout.
Refer to earlier pages and examples in Appendix B for more
detailed explanations.

Note that, in the case of nested variables, the number of
levels is within each nest. For D studies you must keep this
constant across nests so it is a “balanced” design.

In the OSCE study, there are six applicants per circuit and
two raters per station.

Appendix B

Data

Outline

e Data structure
e Data formats

Means, mean-square differences, variances, and variance
components are calculated from actual scores corresponding
to the specific experimental design. The input to G_String,
therefore, is a data-file structured so that the program can
accurately allocate each data item to the appropriate subject
and facet level. This requirement sets relatively strict condi-
tions on the format of the data-file. Any violation of these
restrictions can make the file unreadable or cause errors in the
results.

The data-file is an ASCII text file organized in lines
(rows) and fields (columns). Data have to begin on the first
line. It may not contain title or header lines. Each field is
either empty or contains one score value as positive or
negative, decimal number. Lines are separated by otherwise
invisible “character return” and “line feed” characters. Fields
can be defined either as “fixed width” or “delimited”. The
otherwise invisible “tab” character delimits a field. Using
“tab” delimited fields makes the data file more resistant to
misreading.

The actual scores do not have to start at the beginning
of each line. The format allows for a fixed number of leading
characters or columns. These can either contain facet index
information or they can be skipped. In nested facets, missing
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data are meaningless. In crossed facets, missing data should be
indicated by delimited blanks.

The easiest way to construct a data file for G_String is to
first assemble the data as a spreadsheet file, visually inspect,
and edit it, and finally export or save it as a “tab delimited text
file (.txt)”.

It is highly advisable to start the analysis of a new dataset
by first creating a new directory with a unique and descriptive
name and place all corresponding data-, control-, and result-
files in this directory.

Appendix C

Interpreting program output

The computer output contains many more details of the
above calculations and will be described next. This output is
generated when the process of study calculation is finished,
and is created as a “txtlis” file in the target directory.
Below is a sample output from the example. Annotations are
in this font. On some computer operating systems you may
have to delete the secondary extension “.lis” to be able to read
the file.

CONTROL CARDS FOR RUN 1
Control Cards File Name: ~Temp.txt
mmi2003 dataset

GSTUDY mmi2003 dataset

COMMENT

COMMENT  Processing date: 06/06/2010 2:49:22 PM

COMMENT

COMMENT  This is a sample run, using an actual empirical
dataset

COMMENT  a large number of applicants are being tested in

COMMENT 3 sequential circuits with 6 stations each. each
station

COMMENT  employs 2 raters with 4 standard items each

COMMENT

COMMENT

COMMENT% applicant (a)
COMMENT% circuit (¢)
COMMENT% station (s)
COMMENT% rater (r)
COMMENT% item (i)

COMMENT

COMMENT  The calculated “Grand Mean” =4.4010

COMMENT  G_String III normalizes scores by subtracting
the Grand Mean from each score

COMMENT

OPTIONS NREC 5 “*lis” TIME NOBANNER

EFFECT C 3

EFFECT *ac 666

EFFECT s 6

EFFECT r:s 222222

EFFECT i 4

FORMAT 30 0

PROCESS “~Temp.dat”
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This is an image of the control card input for urGENOVA
created by G_String in response to user input. Note how
the “EFFECT” lines completely describe the design, with
circuits, applicants nested in circuits (6/circuit), stations,
rater nested in station (2/station.,) and item. The calculated
Grand Mean over all the scores is 4.4010.

INPUT RECORDS FOR RUN 1
mmi2003 dataset

RECORD NUMBER 1

1.699 2599 1599 1599 1.099 0.099 1599 1.099 -2.401 —1.401

urGENOVA images the data on the first five records. Some
are omitted from this example. The grand mean has been
subtracted from the actual scores.

MEANS FOR MAIN EFFECTS FOR RUN 1
mmi2003 dataset

Means for ¢
—0.045 0.528 —0.483
Means for a:c

0.089 -0.078 -0.839 —0.214 0932 -0.161 0.849 —-1.339 1.297 -0.318
0995 1.682 -0.943 —0.672 0.745 -0.016 —1.130 —0.880

Means for s
0.238 —-0.283 —0.102 0.207 0.203 -0.262
Means for r:s

0.418 0.057 -0.887 0.321 0.080 —-0.234 0.314 0.099 -0.679 1.085
-0.873  0.349

Means for i

0.205 -0.119 —-0.047 —0.040

urGENOVA outputs the means for each variable.

Below is the ANOVA table created by urGENOVA. The
format is conventional, except that the right column is
“variance component” and is used in the calculation of G
coefficients. (Negative variance components are set to zero
when computing G coefficients.)

ANOVA TABLE FOR RUN 1
mmi2003 dataset

Effect df T SS MS VC

c 2 16882.85677 147.89583  73.94792  0.10650
ac 15 1739352604 510.66927 34.04462  0.58973
s 5 16778.13368  43.17274  8.63455 —0.27757
rs 6 17005.35069 227.21701 37.86950  0.46282
[ 3 16747.93634  12.97541 432514  0.01591
cs 10 1707520312  149.17361 1491736 0.17605
crs 12 17351.61458  49.19444  4.09954  0.02040
ci 6 16898.97569 314352  0.52392  0.00179
asic 75 18021.96875 436.09635  5.81462  0.27813

(continued)

ar.cs 90 18619.43750  321.05729 3.66730 0.82002

ai:c 45 17420.10417 10.45920 0.23243  —0.00642
si 15 16803.64583 12.53675 0.83578  —0.00231
ri:s 18 17044.84722 13.98438 0.77691 0.02484
csi 30 17118.02083 14.16204 0.47207 0.01000
cri:s 36 17420.29167 11.87500 0.32986 0.00711

asi:c 225 18144.87500 69.62934 0.30946 0.01113
ari:cs 270 18845.75000 77.54688 0.28721 0.28721

Grand mean: 0.

Below is the first output from G_String. It is a calculation
of the overall test generalizability, so (a) there are no fixed
facets, and (b) the number of levels of each facet
corresponds to the original study.

The allocation of individual terms is based on the
specification of random or fixed facets. This is according
to the rules in “computing G coefficients” section,
abstracted from Brennan.

Date and time at beginning of Run 1: Sun Jun 6 14:49:22 2010
Processor time for run: 0 seconds

Computation sequence for G study

“a” Differentiation ~ 6.00

“c” Stratification 3.00

“s” Random 6.00

“r Random 2.00

i Random 4.00

Pattern  Var. Comp. Levels Signature  Rule

[¢] 0.1065 1 s Delta only

ac 0.5897 1 ds tau only

s 0.0000 (6.0) r Delta only

rs 0.0386 (12.0) r Delta only

i 0.0040 4.0) r Delta only

cs 0.0293 (6.0) r Delta only

cris 0.0017 (12.0) r Delta only

Ci 0.0004 (4.0) r Delta only

as:.c 0.0464 6.0) dr Delta and delta
ar:.cs 0.0683 (12.0) dr Delta and delta
ai:c 0.0000 4.0) dr Delta and delta
si 0.0000 (6.074.0) r Delta only

ri:s 0.0005 (12.0%4.0) r Delta only

csi 0.0004 (6.074.0) r Delta only

cri:s 0.0001 (12.074.0) r Delta only

asi:c 0.0005 (6.074.0) dr Delta and delta
ari:cs 0.0060 (12.0*4.00 dr Delta and delta
Results

s2(T) =0.590

s2(D) =0.303

s2(d) =0.121

Er2 =0.830

Phi =0.661

The first five outputs are shown in Screen 11:
Below is an example of D studies. The user can control
two aspects of the computation: (a) which facets are random
and which are fixed, and (b) how many levels of each. These
are used for different purposes:
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Random vs. fixed facets. In G theory, one can compute the
equivalent of classical coefficients such as inter-rater reliability,
internal consistency, and so on, by restricting the analysis,
setting one facet at a time as random, and setting the “n” for
this facet equal to one.

In the example above, to compute inter-rater reli-
ability for a single rating and a single station, one
would declare rater as random, station, and item as
fixed, and set all the levels equal to one. If one
wanted the inter-rater reliability of the total score
over all four items, number of levels of item would
remain four. To look at internal consistency (across
items) item becomes the random facet, rater, and
station fixed, and levels remains at four (since
internal consistency is for the total score, so amounts
to averaging by number of terms).

The number of levels is a matter of judgment, and is based
on whether the reliability is for a single (item, rater, station)
or for the mean across all items, raters, and stations. To
understand how this works, we have taken the above
example and created a number of D study scenarios:

Random Fixed
facet(s) facet(s) Nater Nitem Nstation

S Rl 2 4 1

Interpretation

Inter-station reliability of total
score from two raters and
four items

Inter-station reliability for any
single item from any rater

Inter-station reliability for total
score from two raters and
four items

Inter-rater reliability for total
score from four items, six
stations

Inter-rater reliability for total
score on any station

Inter-rater reliability for any item,
any station

Internal consistency (across
items) for one rater, one
station

Average inter-item correlation

Average inter-item correlation
for mean of two raters

S Rl 11 1

S Rl 2 4 6

R S, 1 4 6

R S, 1 4 1
R S, 11 1

| RS 1 4 1

-
—_
-

| RS
| R,S 2 1 1

Changing levels — D studies. To this point, we have set the
number of levels as either the original design number or one,
depending on whether we wish to compute reliability for the
single item or the number of levels of the facet in the original
study. We can also vary the number of items at will, to
determine the optimal combination of levels of each facet in
the design. In this case, the interest is in the overall test
reliability, so there are no fixed facets, but we might vary
number of levels at will.

Note that when we proceed with D studies, the design is
balanced by definition, since we input the number of levels of
each facet as a single number. Thus unbalanced designs only
arise in the initial calculation of the G coefficient from the
original data.
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For example, are we better to have 6 stations with 2
raters (Nr=2, Ns=06), or 12 stations with 1 rater
(Nr=1, Ns=12)? What do we gain in going from 12
stations to 18?

Computation sequence for D study

“a” Differentiation 6.00
“c” Stratification 3.00
“'s” Random 12.00
“r Random 1.00
“ir Random 4.00

[¢] 0.1065 1 s Delta only

ac 0.5897 1 ds tau only

s 0.0000 (12.0) r Delta only

rs 0.0386 (12.0) r Delta only

i 0.0040 (4.0) r Delta only

cs 0.0147 (12.0) r Delta only

crs 0.0017 (12.0) r Delta only

Ci 0.0004 (4.0) r Delta only

as:.c 0.0232 (12.0) dr Delta and delta
ar.cs 0.0683 (12.0) dr Delta and delta
ai:c 0.0000 (4.0) dr Delta and delta
si 0.0000 (12.04.0) r Delta only

ri:s 0.0005 (12.0%4.0) r Delta only

csi 0.0002 (12.04.0) r Delta only

cri:s 0.0001 (12.04.0) r Delta only
asi:c 0.0002 (12.074.0) dr Delta and delta
ari.cs 0.0060 (12.0%4.0) dr Delta and delta
Results

s2(T) =0.590

s2D)  =0.264

s2(d) =0.098

Er2 =0.858

Phi =0.690

Computation sequence for D study

“a” Differentiation 6.00

“c” Stratification 3.00

“s” Random 18.00

“r Random 1.00

i Random 4.00

¢ 0.1065 1 s Delta only

a.c 0.5897 1 ds tau only

s 0.0000 (18.0) r Delta only

rs 0.0257 (18.0) r Delta only

i 0.0040 (4.0) r Delta only

cs 0.0098 (18.0) r Delta only

cris 0.0011 (18.0) r Delta only

Ci 0.0004 (4.0) r Delta only

as:.c 0.0155 (18.0) dr Delta and delta
ar:cs 0.0456 (18.0) dr Delta and delta
ai:.c 0.0000 (4.0) dr Delta and delta
si 0.0000 (18.0%4.0) r Delta only

ri:s 0.0003 (18.0%4.0) r Delta only

csi 0.0001 (18.04.0) r Delta only

cri:s 0.0001 (18.0%4.0) r Delta only
asi:c 0.0002 (18.0%4.0) dr Delta and delta
ari:cs 0.0040 (18.0%4.0) dr Delta and delta

Appendix D

Error messages

As an aid in troubleshooting, we provide here a summary of all
error messages of G_String IV. Each error message carries
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a specific error code in {}. These identify uniquely, at which
location of the code an error was detected.

Error of experimental design:

it. A corrupted, re-use control file, though, could give rise to
this error. This error is fatal.

Errors involving the control file:

{E 10} Facets “Facet 1” and “Facet 2” are confounded. You
would not get valid results!

Your experiment is poorly designed. You do not have a
sufficient number of nested data in your study to resolve the
confounding between it and the nested facet. G_String will
deliver results, but they are meaningless.

Errors of design specification:

{D 10} Pattern should not be empty!

You have to define a design pattern for each nesting level.
This error is fatal.

{D 20} G_String IV does not handle a subcomponent of
type “x:y:z”.
{D 21} G_String IV does not handle a subcomponent of
type “x:y:z”.
{D 22} At present, we does not handle effects of the
type “xy:z”.
{D 24} At present, we does not handle effects of the
type “x:y:z”.

{D 25} G_String cannot handle this level of complexity
at present.{x:y:z}.

These error messages all mean the same; they have been
detected at various stages of calculation. G_String IV cannot
handle this specific design complexity. Maybe, at a later stage
we will figure out how to do it and will update the program.
This error is fatal.

{D 30} You must have exactly one facet of differentiation!

{D 31} You must have exactly one facet of differentiation!

Under normal circumstances, you should not get this error,
since following the steps of G_String will automatically prevent
it. A corrupted, re-use control file, though, could give rise to
this error. This error is fatal.

{D 40} Error in naming facets; typically duplication.

Each facet requires a distinct one-character abbreviation.
This error is fatal.

{C 10} Control file is not well formed!

In order for G_String IV to re-use an existing control file,
it has to be formed according to fixed rules (see p. 23 of the
manual for an example). Specifically, the “comment”’ tag
of the line specifying the facets must be terminate by a ‘%’
character, ie., “COMMENT%” rather than “COMMENT”.
When you use a control file generated by G_String III
or later, it is automatically in the correct format. This error
is fatal.

Errors involving the data file:

(F 10} Data file “file name” is not readable.

The format of the file specified is not recognized as a
data file format for either G_String or urGENOVA. This
error is usually due to specifying the wrong file. This error
is fatal.

{F 20} Data does not match facet specifications.

The facet specification doesn’t correspond to the structure
of the data file. Maybe, the asterisk was set to the wrong level
(Step 7). This error is fatal.

{F 30} Insufficient records to calculate grand mean! Empty
line “xxx.”

{F 31} Data file does not contain sufficient data.

Either you require too many datapoints, or you dropped
some data from your data file. This error is fatal.

{F 32} Your data file is missing “xxx” values. They have
been replaced with the grand mean.

{F 33} Your data file is missing “xxx” values. They have
been replaced with the grand mean.

These messages indicate that the structure of the data file
is correct, but you have empty data cells. G_String will replace
missing values with the grand mean, which is ok, if only
a small percentage of cells are involved, and they are more
or less randomly distributed through your data file. Otherwise
you have to rethink your design, in order to avoid systematic
errors.

{D 50} The facet of differentiation can only be nested in a
facet of stratification.

Under normal circumstances, you should not get this error,
since following the steps of G_String will automatically prevent

{F 40} Unable to convert “String” to decimal number.

You may have mixed up your files, or left the column titles
in the data file. G_String expects a numerical value, not
characters. This error is fatal.
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Internal errors:

{M 10} Crossed facets must have integer levels.

G_String expects that integer levels rather than fractional
levels are specified for crossed facets. This error is fatal.

{M 20} Wrong averaging type “X!”

This error should not normally occur. G_String selects the
appropriate averaging types according to rules listed in the
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manual and in Brennan. Theoretically, there could be internal
errors that would call up an incorrect averaging type. This error
is fatal.

Errors transmitted from urGENOVA:

{U 10} urGENOVA error: “message”

If urGENOVA fails for any reason, it emits an error message
which is displayed by G_String. These errors are usually fatal.
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