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Abstract

Classical Test Theory has traditionally been used to carry out post-examination analysis of objective test data. It uses descriptive

methods and aggregated data to help identify sources of measurement error and unreliability in a test, in order to minimise them.

Item Response Theory (IRT), and in particular Rasch analysis, uses more complex methods to produce outputs that not only

identify sources of measurement error and unreliability, but also identify the way item difficulty interacts with student ability. In this

Guide, a knowledge-based test is analysed by the Rasch method to demonstrate the variety of useful outputs that can be provided.

IRT provides a much deeper analysis giving a range of information on the behaviour of individual test items and individual

students as well as the underlying constructs being examined. Graphical displays can be used to evaluate the ease or difficulty of

items across the student ability range as well as providing a visual method for judging how well the difficulty of items on a test

match student ability. By displaying data in this way, problem test items are more easily identified and modified allowing medical

educators to iteratively move towards the ‘perfect’ test in which the distribution of item difficulty is mirrored by the distribution of

student ability.

Introduction

The quality of assessment methods and processes is as

important as the quality of the teaching and learning process

in any form of educational activity. Undergraduate and

postgraduate medical examination data needs to be evaluated

using psychometric methods in order to understand, monitor,

control and improve the quality of assessments. Medical

educators and standard setters need to provide a stable and

predictable measure of student performance over time to

minimise sources of variation in examination data. The post-

examination analysis of objective test data can provide

the diagnostic feedback to not only improve the validity

and reliability of assessments, but also improve curricula

and teaching strategies (Tavakol & Dennick 2011b, 2012a,

2012b).

These analyses also allow for the identification of aberrant

questions or individual skills assessment items (OSCE), which

are outside of defined control limits and consequently

could reduce the quality of the assessment questions (Wright

& Stone 1979).

The importance of such analyses and their interpretations

for improving student assessment are displayed in Table 1.

The purpose of this Guide is to generally explore in some

detail the way that assessment scores can be affected by

various influences and specifically how the use of Rasch

analysis can aid in detecting these influences, in order that

minimalisation will improve quality.

Comparing Classical Test Theory
with Item Response Theory

This section of the Guide describes and compares the concepts

and methods that underpin Classical Test Theory (CTT), which

is the more traditional approach to psychometric analysis, and

Item Response Theory (IRT), which is a more developed and

contemporary approach.

CTT is relatively easy to understand and has some useful

techniques and outputs; by contrast IRT is conceptually more

complex but produces a much more comprehensive analysis

of an assessment, which takes into account both student and

exam item behaviour. As this Guide attempts to explain, the

Practice points

. Rasch analysis is a particular method used in IRT.

. IRT supersedes CTT, in that it takes into consideration

the interaction between student ability and item

difficulty.

. The characteristics of a test that fits the Rasch model can

be identified, so that test developers can iteratively move

towards the ‘perfect’ test.

. The ‘perfect’ test is one on which the distribution of

student ability is perfectly mirrored by the distribution of

item difficulty.
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practical user of IRT methods does not have to deal with its

complex mathematical constructs. By using the examples in

the text of this Guide, we hope the reader can concentrate

more on interpreting the post analytical outputs.

Traditionally the post examination results that are relayed

back to faculty are often based on CTT models, such as

descriptive reports of means, standard deviations, skewness

measures, box plots, item difficulty, item discrimination,

Cronbach and Kuder-Richardson reliability calculations,

point-biserial correlation coefficients, standard error of mea-

surement and Generalisability (G) studies. CTT concentrates

purely on the items in the assessment and attempts to identify

sources of measurement error and unreliability in the

aggregate scores. With CTT, student ability is based on the

number of questions that he or she answered correctly

and the ability of a group of students is reported in terms of

aggregate statistics. The analysis and interpretations of

objective tests using these CTT techniques has been outlined

elsewhere (Tavakol &Dennick 2011a). Sometime the associa-

tion between aggregate student marks on variables, such as

OSCE sites, cases or examiners, are identified using statistical

procedures (e.g. chi-square and t-tests). As the CTT model

focuses on the test and its errors, it provides little insight into

how individual students interact with the test and its questions

or how questions interact with individual students.

Furthermore, as CTT statistics are all based on the aggregate,

their values are sample size dependent. This means that the

correlation of individual questions with the total score will be

higher or lower purely on the basis of sample size,

independently of the quality of the question. Because of this

sample size effect, CTT may not always provide a greater

understanding of the quality of questions being tested

compared to IRT. Using the CTT model, investigators relate

test scores to true scores by understanding the nature of errors

and factors influencing the reliability of the test. In addition, if

different students have the same mark on the test it is difficult

to assess their ability, in terms of item difficulty, if they have

different response patterns to the test questions. Just because

students have the same mark does not mean they have

answered the same questions correctly. Using the CTT model,

it is not possible to calculate how individual students behave

with particular questions (Hambleton & Jones 1993).

Although the results of CTT provide a preliminary and

exploratory analysis of exam data, medical educators need to

further investigate the relationship between the ability of

students (independent of item sample size) and the ease or

difficulty of questions (independent of student sample size). In

order to look at this relationship, faculty need to use IRT which

overcomes the limitations of the CTT model and provides a

global picture of the distribution of student marks in relation to

the range of difficulty of the questions. An assumption of IRT is

that the probability of a student answering an item correctly is

a function of the item difficulty (B) and the student ability (D).

However, despite the theoretical advantages of the IRT

measurement model compared with the CTT model in the

medical education literature, it has received little attention,

Table 1. Ways in which psychometric methods can improve medical education assessments.

1. Modifying and improving individual questions and individual stations continuously: aberrant questions and stations can be detected and then restructured or

discarded.

2. Improving examination blueprinting by deciding on the number of stations, cases, standardised patients (SPs) and detecting sources of measurement error in

cases/SPs; psychometric methods, such as the many-facets Rasch model, enables us to consider student ability, item difficulty, the difficulty of the rating

categories and the severity of examiners and their interactions simultaneously.

3. Improving the practical organisation of examination (e.g. sites, SPs, examiners, marking procedures); do SPs represent patients in a standardized and

consistent way? and are all sites fair for all students?

4. Improving and developing new approaches for analysing and interpreting exam data; using IRT faculty are able to obtain further information about the item

difficulty and the student ability.

5. Improving the credibility of the competence-based pass mark; using cluster analysis and Rasch analysis.

6. Optimising duration of OSCE stations; if many students fail a given station, this could be due to the fact that they did not have enough time to demonstrate

their performance.

7. Improving the validity and reliability of checklists, rating and global rating scales; the construct validity and the check-lists that are interpreted by examiners

can be examined by the Rasch model.

8. Improving the reliability of total OSCE scores and knowledge-based tests; improving item discrimination indices, stations and questions or increasing the

number of question and stations can increase reliability.

9. Improving inter-station reliability (the global rating scale versus checklists); using Cronbach’s coefficient alpha faculty can estimate the reliability of the

checklist score. In addition, it is possible to compare independent alpha coefficients of global rating scales and checklists using the Hakstian-Whalen test.

10. Evaluating and improving the internal structure of multiple choice questions and OSCE stations. (This helps to identify the domains that are being measured

which are important in test score interpretation.)

11. Recognising, isolating and estimating measurement errors associated with students’ scores to gain a clearer picture for estimating the true score (e.g. the

effect of examination sites on students’ scores); the use of Generalisabilty (G) theory and the Rasch Model.

12. Generalisability (G) theory; monitoring and improving the quality of an OSCE through aggregate analytical methods (i.e. G studies).

13. Providing useful information about inconsistent ratings; if a category in a checklist has not been used by examiners, this category can be combined with other

categories.

14. Improving cases/SPs by detecting whether they are easy or difficult.

15. Mapping item difficulty to student ability using the Rasch model. This helps faculty to compare the range of student ability and item difficulty.

16. Improving the construct validity of a test by the Rasch model; PCAR will provide diagnostic information about the construct validity of the test.

17. Identifying guessing strategies using the IRT models.

18. Investigating the variability of students’ scores on different knowledge cases or stations.

19. Improving inter-rater reliability, particularly using Rasch Modelling

21. Using the Rasch model to reveal abnormal scoring patterns and to see whether the category responses employed in OSCE rating scales are being

interpreted correctly.

22. Developing item banks which can be used in national assessment databases and for CAT.

Psychometric evaluation using Rasch analysis
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despite the fact that medical educators have acknowledged its

existence (Downing 2003; de Champlain 2010).

One of the main models of IRT is known as the ‘Rasch’

model; however this too has received little attention in test

item analysis. Using the search terms: ‘Rasch’, ‘Rasch analysis’

and ‘the multi-faceted Rasch model’, in searching all medical

education journal articles published between 1990 and January

2012 revealed only a few articles reporting on the application

of the Rasch measurement model for analysing individual

questions and individual OSCE stations (de Champlain et al.

2003; Bhakta et al. 2005; McManus et al. 2006; Iramaneerat

et al. 2008; Houston 2009; Chang et al. 2010; Yang et al. 2011).

Two parameter IRT (2PL) or three parameter IRT (3PL)

models are also available where item discrimination, item

difficulty, gender, student guessing behaviour or year of study

can be included in the analysis.

Given the limitations of the CTT model previously

described, the purpose of this Guide is to explain how the

Rasch model can be used for analysing and constructing tests

for assessing the knowledge and practical skills of medical

students. In this Guide, we will demonstrate that Rasch

analysis is a more sophisticated tool for the psychometric

evaluation of assessments providing a detailed and forensic

analysis of exam data that can be practically used to improve

test quality.

Methods

The Rasch model

Despite the complexity of the statistical and measurement

methods, used by the Rasch model, the results can answer

some simple questions given below.

. How well does a student answer a question if we know the

student’s ability and the item’s difficulty?

. What is the probability of a student answering an item

correctly given a measure of item difficulty?

. If student ability equals item difficulty, what is the

probability of answering the item correctly?

. What is the probability of a less or more able student

answering an easy or difficult item?

The Rasch model identifies, isolates and estimates student

and item measures to provide these probabilities.

In Rasch analysis, student ability and item difficulty need to

be measured in the same units, namely ‘logits’. Student ability

is the natural logarithm of the ratio of the probability of success

divided by the probability of failure, ln(p/1-p). Higher logits

(positive values) imply greater levels of ability. Lower logits

(negative values) imply lower levels of ability. For example, if

a student answers 60% of a test’s questions correctly, the odds

ratio for the whole test is ln 0:6
0:4

� �
¼þ0.4 logit, which is the

student’s ability. The logit for item difficulty is calculated by

reversing the numerator and denominator in the above

formula. For example, if an item is answered correctly 80%

of the time, its difficulty is ln 0:2
0:8

� �
¼�1.38 logit. Student ability

and item ability can therefore be displayed on the same scale

of logits. Zero on the scale represents the centre of the ability

range and the centre of the difficulty range. A student with an

ability of 0 logits has an average ability concerning the

knowledge being tested. Under the Rasch model, the

difference between student ability and item difficulty predicts

the likelihood of a correct answer. For example, if student

ability equals item difficulty, the difference is zero and hence

the probability of a student answering a question is 50%. If

student ability is greater than an item’s difficulty this predicts

the probability of a correct answer. If a student has an ability of

þ3 logits and an item has a difficulty of þ1 logits then the

probability of answering the question is 0.88. A key advantage

of the Rasch model is that item difficulty and student ability are

measured independently from each other (Andrich 2004), i.e.

the distribution of items on the test cannot influence the

student ability estimates and the distribution of students cannot

influence the item difficulty estimates.

With Rasch analysis the relationship between student ability

and item difficulty is displayed in an Item Characteristic Curve

(ICC) as shown much later in Figure 4. The ICC provides

informative data about each item and the probability of

answering a question correctly given the student ability. The

ICC also shows how an item contributes to the underlying

construct of interest which either can be the relevant cognitive

or psychomotor domain being assessed. The ICC displays

those items that do not contribute to the underlying construct

of interest as outliers on the scale. Investigating these items

and removing them from the test can improve the construct

validity of the test. For example, in a test we would not expect

to see low performing students having a high probability of

answering a given item correctly. We have explained how to

draw an ICC using student ability and item ability elsewhere

(Tavakol & Dennick 2012a, 2012b). To draw an ICC, readers

should calculate the item difficulty of a question and then

calculate the ability of all students. The ICC can then be drawn

using ExcelTM. In order to use Rasch analysis to evaluate an

assessment and to make valid predictions, the data should fit

the Rasch model as closely as possible. Within Rasch analysis,

there are a number of statistical processes used which can

provide evidence as to how well the observed data fits the

model. Lack of fit does not invalidate the model, on the

contrary, it identifies test factors and items which should be

examined further and which, if appropriately modified, will

improve the validity of the test. It is a goal of Rasch analysis to

produce a test that fits the Rasch model as closely as possible.

These concepts and processes are discussed in more

detail below.

Unidimensionality

One of the assumptions of Rasch modelling is that a test

optimally measures a single underlying construct; this is

termed unidimensionality. For example this underlying single

construct can be identified with cognitive ability in a knowl-

edge-based test or practical performance in an OSCE.

Unidimensionalty implies that all items in a test or all OSCE

stations assess a single construct or dimension. Therefore, we

need to ensure that the dimensionality assumption of a test is

not violated by some aberrant items. Simply speaking, if a

question or item cannot contribute to the underlying construct

of a test it should be excluded from the test. Removal of such

M. Tavakol & R. Dennick
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items or questions will also increase the construct validity of

the test. One aspect of Rasch modelling therefore is the

identification of the dimensionality of the test. In this Guide,

principal-component analysis of residuals (PCAR) is used to

examine the unidimensionality of the test. The first or major

factor identified is commonly termed the Rasch Factor or

primary factor. If the data contributing to this factor are

removed analysis of the residual data may reveal further

factors termed for example the 1st, 2nd or 3rd ‘contrast’.

However, if the first ‘contrast’ identified has an eigenvalue (a

statistical measure of the number of questions making up a

construct) of less than two this means that the data

contributing towards this factor do not support an additional

underlying construct and the uni-dimensionality of the test is

supported (Linacre 2011). However, if an eigenvalue of 3.6 is

found in the first contrast this indicates that approximately four

items are measuring an alternative construct, by rounding up

to the nearest whole number. In order to make a decision

about this, we need to examine these items to see if they are

related to different content as this is a sign of the multi-

dimensionality of the test. However, if there is no meaningful

difference in the item content, this may not support the

multidimensionality of a test and the difference has occurred

by chance.

Response dependency

Another assumption of Rasch analysis is local independency of

items. This means that the probability of answering one item

correctly should be independent of the answer to other items.

When the value of an item is predicted by the value of another

item, the assumption of independency is violated. In the

context of the Rasch model, items with a high positive

correlation indicate that one of the two questions is redundant

for the test. Correlations greater than 0.50 between items are

considered an indication of response dependency and items

should be investigated. For example if item 1 has a correlation

coefficient of 70% with item 2 this indicates a local item

dependency between item 1 and item 2, suggesting both item

1 and item 2 are required for the test.

Reliability and separation estimates

In CTT, the reliability of a test is reported via the Kuder-

Richardson or Cronbach reliability coefficient, with a single

value ranging from 0 to 1, indicating the average inter-item

correlation among the question responses. In Rasch analysis

reliability is associated with the range of item difficulty as well

as student ability. As reliability measures are a function of the

interactions between students and items, multiple reliability

values can be reported. In the case of student ability reliability

is presented as ‘person separation reliability’ (PSR), which tells

us whether the test discriminates or spreads out a cohort of

students into groups according to their abilities on the test

(Wright & Masters 1982). In addition, the value of the PSR

indicates the reliability of the location of students among the

items measuring the same construct (Bond & Fox 2007).

A satisfactory value of PSR is similar to the value of

Kuder-Richardson or Cronbach’s alpha co-efficient, ranging

from 0.70 to 0. 95 (Tavakol & Dennick 2011a). However, a

useful reformulation of the PSR as the ‘person separation

index’ (PSI) provides further information about the reliability

of a test. It is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ð1� rÞ

p
. The higher the value (42) of

the PSI the more student groups can be differentiated (Bond &

Fox 2007). For example, if a Cronbach’s alpha of 0.63 is

reported the PSI is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:63=ð1� 0:63Þ

p
or 1.64. This suggests that

the test was not sensitive enough to discriminate high and low

ability students as the value is less than 2.

Rasch item fit

‘Rasch item fit’ statistics show how well or accurately data in

the test fit the Rasch measurement model, i.e. how well item

difficulty or student ability contributes to the underlying

construct of the test (Linacre 2002). This can be used to

identify ‘mis-fitting’ items and to measure the ‘dimensionality’

of the test. The Rasch process calculates an expected score

from each observed score using a chi-squared technique or

t-test for each item. Large deviations between observed scores

and expected scores can give a distorted picture of the test

although data which fits the Rasch model should show smaller

deviations. There are two types of items in terms of Rasch

fitness that can be identified by means of infit and outfit

statistics. Infit statistics are expressed as ‘infit Mean Square’

(infit MNSQ) or ‘infit t’ (infit ZSTD). Outfit statistics are

reported as ‘outfit MNSQ’ or ‘outfit t’ (outfit ZSTD). MNSQ

values can be used to judge the compatibility of the observed

data with the Rasch model, values between 0.70 and 1.30

indicating a good fit. A value of 1 indicates there is a perfect fit

but values less than 0.70 and greater than 1.30 are termed

misfitting and over fitting, respectively, and should lead to an

analysis of the items (Bond & Fox 2007). ‘Infit t’ values also

show the degree to which a question fits the Rasch model.

Observed data follow the Rasch model if the results of infit t

are non-significant (t between þ2 and �2). Outfit and infit

statistics also indicate the degree to which a student fits the

Rasch model.

Although acceptable values of outfit statistics are similar to

infit statistics, it should be noted that infit statistics provide

more useful information about the relationship between the

ability of the students and the difficulty of items as they are

more sensitive to unexpected responses to items close to the

student’s ability level. Outfit statistics are more sensitive to

unusual observed data where students find questions very

easy or very hard or responses to items are far from the student

ability (Linacre 2011). For example, since less able students

struggle to answer difficult questions correctly if they do

answer some difficult questions the outfit statistic will reflect it

by creating a ZSDT value outside the acceptable limit. In

addition, if an item was very easy, say a logit of �3.0, we

would expect a large value for the outfit statistic suggesting the

item should be examined or removed from the test.

Test information function

Another useful feature of Rasch modelling is the ‘item

information function’ which is calculated by mathematically

combining information from student ability (D) and item

Psychometric evaluation using Rasch analysis
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difficulty (B). The sum over all items gives the ‘test information

function’ (TIF). Under the Rasch model, the TIF provides

useful knowledge about the reliability of the test at different

levels of student ability. Calculating a single value for the

reliability (e.g. Kuder-Richardson reliability or Cronbach alpha,

as in CTT) does not take into consideration that reliability is

actually influenced by student ability and item difficulty.

Therefore, if a test has a high reliability coefficient, one can ask

for which group of students is it reliable (low, moderate or

high ability students?).The Rasch method provides a test

information curve, where the sum of all item information is

plotted against student ability, which enables us to estimate

reliability at different levels of student ability, with higher

information indicating more reliability. A test containing highly

discriminating items will have a tall narrow curve. Less

discriminating items provide less information but over a

wider range. That is the test has poor reliability and should

be investigated and improved using psychometric methods.

Item difficulty invariance

Another feature is ‘item difficulty invariance’ which provides

valuable information about the invariance or stability proper-

ties of item values within a test. Invariance in this context

means that the properties of an item are not influenced by the

ability of the students answering the item. A scatter plot of item

difficulty values from high- and low-ability students can

display a correlation that reveals the extent to which item

difficulties vary between the two groups. By inserting 95%

confidence interval control limits onto such plots items that are

not invariant or unstable with respect to ability can be easily

identified. Item difficulty invariance also allows us to identify

items that are useful across the ability range in order to

calibrate questions for item banks. This means that assessors

will have convenient access to a large number of tested

questions which are classified according to student ability and

item difficulty. Such questions can also be used for computer

adaptive testing (CAT) where the questions administrated to

students can be modified according to their performance on

the previous questions.

Item Characteristic curve

As previously mentioned, an important feature of the Rasch

model is that the probability of a student answering an item

correctly in a test is a function of the student’s ability (B) and

the item difficulty (D). This function is depicted graphically in

an ICC. We have already shown how to draw the ICC

elsewhere (Tavakol & Dennick 2012a, 2012b). We indicated

that if the student ability is equal to the item difficulty

(B-D¼ 0), the probability that the student will answer the

question correctly is 50% which can be seen in the ICC. By

knowing the student ability–item difficulty values for each

student we can draw, in Excel, the ICC to display the response

probability for any student attempting to answer any particular

item. (In fact, using ICCs it is possible to estimate a student’s

‘true’ score on a test). To simplify, if a test has two questions, a

student might receive a mark of 0, 1 or 2. If the student has an

ability of 0 logits they could have a probability of 0.23 of

answering question 1 correctly and a 0.56 probability of

answering question 2 correctly. Therefore, their calculated

‘true’ score is 0.79/2. However, their ‘actual’ score can be

different.

Participants

The examination data used in this Guide was processed from

results obtained from 355 medical students in their final clinical

knowledge-based exam. We used Winsteps� software (Linacre

2011), to produce simulated modifications of the data to create

examples for the purposes of this Guide. We did not require

approval from our research ethics committee as this study was

carried out using data acquired from normal exams within the

curriculum with the goal of monitoring the quality of individual

questions in order to improve student assessment.

Data collection

Knowledge-based test

The simulated knowledge-based questions were used to

assess cognitive performance of students in this study. The

test consisted of 43 questions to assess two clinical cases. Case

1 consisted of 24 questions on Clinical Laboratory Sciences and

Case 2 consisted of 19 questions on chronic illness in General

Practice. Each question was marked dichotomously, i.e.

students received 1 mark if they answered the question

correctly and 0 if they answered incorrectly. The potential

score for Case 1 and Case 2 was 24 and 19, respectively. There

was no negative marking for incorrect answers. Students

responded to the questions through an online assessment

system (Rogō, University of Nottingham) during a normal

summative examination.

Psychometric software

The Rasch measurement model (Rasch 1980) was used to

analyse the different response patterns obtained using

Winsteps� software.

Results

In this section, we will demonstrate the results of the Rasch

analysis of our simulated exam data under the headings

previously discussed. For each section, we will discuss the

following.

Unidimensionality

PCAR was performed to investigate the unidimensionality for

the combined cases and for each case. The eigenvalue for both

cases was 2 indicating that the test measured a single

underlying construct. For the 1st contrast both cases had an

eigenvalue of less than 2 indicating they also measured a

single underlying construct. Therefore the unidimensionality

for each case is supported and both cases are potentially

measuring the same underlying construct (Table 2).

M. Tavakol & R. Dennick
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In the whole test, the Rasch factor explained 19.4 items

(eigenvalues) of the variance. In Case 1, the Rasch factor

explained 13.3 items (eigenvalues) of the variance. In Case 2,

the Rasch factor explained 9.7 units of the variance. Factor

loadings in the whole test indicated that only one question

(Q28) had a factor loading greater than 40. Based upon these

values, it is unlikely that the item residuals (data left after data

supporting the first factor have been removed) identify a

further factor and therefore a unidimensionality model of the

whole test is supported. Following the removal of question 28

from the whole test, there was little effect on the value of factor

1 (eigenvalue¼ 1.9) and therefore, we kept it in for the next

analysis.

Response dependency

The local independence assumption is not violated if the order

of the questions in an examination does not affect their

difficulty. Test Response dependency was assessed for the

complete test and for each case. Inter-correlations between

item standardised residuals for the whole test were less than

0.50, ranging from �0.18 to 0.29. Similar results were also

found for both cases 1 and 2, ranging from �0.13 to �0.18 for

case 1 and �0.17 to 0.37 for case 2. These results suggest that

items were locally independent and the local independence

assumption is not violated. The order of the questions

therefore does not appear to affect item difficulty.

Reliability and separation estimates

The PSR for the whole test was 0.65 with a PSI of 1.37. A PSI

value less than 2 indicates that the spread or separation of

students on the construct being measured was not satisfactory,

suggesting that the questions had low discrimination. Similar

findings were also found in Case1 (PSR¼ 0.60; PSI¼ 1.21) and

Case2 (PSR¼ 0.44; PSI¼ 0.88).

Rasch item fit

Table 3 shows item difficulty, standard error and item fit in

each case. The outfit statistics show that Q11 and 16 are not

within the acceptable range (both for MNSQ and ZSTD)

implying they needed to be investigated as they did not

contribute towards the underlying test construct. This could

also show that item difficulty does not map to student ability.

The infit mean square statistic shows that all questions are

within the acceptable range with a mean of 1.0. As we can see

from Table 4, the outfit MNSQ has a mean less than 1.00 and

Q5, 12 and 14 are outside the acceptable range of the outfit

MNSQ, indicating questions outside the 0.7–1.3 range. For

example, these items are too easy for all students and do not fit

the Rasch model and can hence distort the single underlying

construct of the test. In addition the ability of the students goes

beyond the ability of these items. These questions therefore

should be investigated.

Test information function

Figure 1 displays test information values for questions in cases

1 and 2, respectively. The TIF shows the reliability of the test at

different levels of student ability. The highest reliability values

are 0.76 and 0.66 in cases 1 and 2, where the ability of the

student is equal to 0. These curves indicate that both cases are

less reliable for low- and high-level students.

The graphs in Figure 1 illustrate the relationship between

student ability (measured in logits) and the sum of the item

information measures for the whole test. Reliability values are

calculated from the graphs. For example, in case 1 the

reliability value for individuals with ability 0 logits is calculated

as 0.76, whereas for students with ability �3.5 the reliability

estimate is 0.33.

Table 2. Rasch factor analysis of the whole test, cases 1 and 2.

Test
No. of

questions
Rasch factor
(eigenvalues)

Factor 1
(1st contrast)
(eigenvalues)

The whole test 43 19.4 2.0

Case 1 24 13.3 1.5

Case 2 19 9.7 1.7

Table 3. Item difficulty, standard error and infit and outfit statistics
in case 1.

Infit Outfit

Question
Item difficulty

logitsa SEb MNSQ ZSTD MNSQ ZSTD

Q1 1.86 0.12 1.00 0.10 0.97 �0.40

Q2 0.71 0.13 0.96 �0.87 0.91 �1.02

Q3 0.71 0.13 1.00 0.09 0.96 �0.48

Q4 �1.52 0.23 0.97 �0.12 0.76 �0.75

Q5 2.85 0.14 1.04 0.60 1.01 0.15

Q6 �0.48 0.16 1.02 0.25 1.02 0.16

Q7 1.56 0.12 1.03 0.60 1.05 0.75

Q8 2.01 0.12 1.02 0.49 1.05 0.68

Q9 �0.28 0.15 0.98 �0.19 0.87 �0.80

Q10 0.38 0.13 1.00 0.04 0.95 �0.48

Q11 �0.78 0.17 1.04 0.38 1.63 2.59

Q12 �0.97 0.19 1.03 0.25 0.96 �0.09

Q13 �1.28 0.21 0.97 �0.14 1.00 0.08

Q14 �2.1 0.29 1.01 0.11 0.87 �0.21

Q15 �3.1 0.45 1.00 0.14 0.82 �0.15

Q16 3.09 0.15 1.01 0.10 1.03 0.30

Q17 �0.15 0.15 1.04 0.57 1.20 1.34

Q18 �0.28 0.15 1.01 0.15 1.12 0.80

Q19 �1.08 0.19 1.01 0.15 1.46 1.71

Q20 �0.63 0.17 0.99 �0.03 0.93 �0.33

Q21 �0.13 0.15 0.99 �0.14 0.98 �0.06

Q22 �1.68 0.24 0.99 0.03 0.85 �0.35

Q23 �0.28 0.15 0.96 �0.49 0.82 �1.17

Q24 1.59 0.12 0.92 �1.85 0.90 �1.60

Mean 0.00 0.17 1.00 0.00 1.00 0.00

SD 1.52 0.07 0.03 0.50 0.19 0.90

Notes: aItem difficulty measured in logits (negative values indicate easier

questions).
bStandard error.

MNSQ: mean square (values between 0.70 and 1.30 are within acceptable

limits for the Rasch model).

ZSTD: value of t-test (values between �2 and þ2 are within acceptable limits

for the Rasch model).

Figures in bold indicate questions outside Rasch model (Q11 and Q19).
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Comparing students and questions

In case 1, students had a mean ability of 1.52 logits with a

standard deviation of 1.01, while in case 2, they had a mean

ability of 1.42 logits with a standard deviation of 0.89. This

indicates that case 1 was slightly easier than case 2. The mean

of item difficulty is 0 logits, by definition, since the mean value

is where 50% of items are answered correctly, (ln(50/50)¼ 0).

But, case 1 had a standard deviation of 1.52, whereas case 2

had a standard deviation of 1.77. We can confirm that the vast

majority of questions are located between �1.52 and þ1.52 in

case 1 and between �1.77 and þ1.77 in case 2. Standard

deviations (and spread) of item difficulty are greater than

standard deviations (and spread) of student ability. The item–

student map clearly shows the relationship between student

ability and item difficulty of both cases (Figure 2).

Figure 2 displays the difficulty hierarchy of questions as

answered by the students for both cases. It can be seen that

student ability is greater than item difficulty for both cases and

hence, overall, students are more likely to answer questions

correctly. There are some questions with difficulty measures

below the least able student and few questions with difficulty

beyond the most able one. In case 1, student measures range

from approximately �1.0 logits to þ5.0 logits and the item

difficulties range from �3.5 to þ3.5 logits. This means that the

range of item difficulty is not as good as it could be as most

items are located on the ‘easy’ side. Similarly, such findings can

be calculated for case 2. It should be noted that a difficult test

has negative mean student ability and therefore, we would

expect to see the majority of questions at the top right side of

the map and students at the bottom left-hand side of the map.

Figure 1. Test information function.

Note: r¼ test reliability.

Table 4. Item difficulty, standard error and infit and outfit statistics
in case 2.

Infit Outfit

Question
Measure
logitsa SEb MNSQ ZSTD MNSQ ZSDT

Q1 1.81 0.12 1.05 1.12 1.07 1.20

Q2 2.57 0.13 1.04 0.62 1.10 1.06

Q3 1.46 0.12 0.99 �0.32 0.98 �0.27

Q4 0.21 0.13 0.93 �1.13 0.91 �0.89

Q5 �4.05 0.71 0.99 0.21 0.36 �0.99

Q6 �0.06 0.14 1.05 0.63 1.19 1.56

Q7 0.80 0.12 0.96 �1.01 0.91 �1.42

Q8 �0.47 0.16 1.04 0.42 0.94 �0.31

Q9 2.23 0.13 1.01 0.13 1.06 0.76

Q10 0.94 0.12 1.02 0.43 1.06 0.97

Q11 �0.42 0.15 0.93 �0.73 0.87 �0.85

Q12 �2.63 0.36 0.98 0.06 0.54 �1.04

Q13 �1.83 0.25 0.95 �0.16 0.78 �0.60

Q14 �2.51 0.34 0.95 �0.07 0.56 �1.06

Q15 1.06 0.12 0.98 �0.51 0.96 �0.65

Q16 0.97 0.12 1.03 0.78 1.03 0.55

Q17 �1.11 0.19 0.98 �0.08 0.82 �0.77

Q18 �0.91 0.18 1.02 0.23 1.02 0.14

Q19 1.93 0.12 1.06 1.23 1.11 1.79

Mean 0.00 0.20 1.00 0.10 0.91 0.00

SD 1.77 0.14 0.04 0.6 0.21 1.00

Notes: aItem difficulty measured in logits (negative values indicate easier

questions).
bStandard error.

MNSQ: mean square (values between 0.70 and 1.30 are within acceptable

limits for the Rasch model).

ZSTD: value of t-test (values between �2 and þ2 are within acceptable limits

for the Rasch model).

Figures in bold indicate questions outside Rasch model (Q5, Q12 and Q14).
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In order to demonstrate an ideal situation we have created

some simulated data as depicted in Figure 2 (simulation 3). It

can be seen there is a range of item difficulties which match

the ability of students. It is worth noting that if the students’

mean ability in the test approaches 0, the ability of the students

will map directly to the difficulty of the items. This is the aim of

‘best test design’, to match student ability to item difficulty.

Item difficulty invariance

Item difficulty values are divided into group of students (high

and low performance on exam data) in both cases. (Figure 3)

The graphs in Figure 3 show scatter plots of item difficulty

from high versus low ability student groups. 95% confidence

limits indicate the boundaries of questions that are within

invariance limits.

As can be seen in Figure 3, all the plotted questions

(highlighted in blue) for 24 questions lie along the diagonal

line. This is not a regression line, but the Rasch-modelled

relationship required for invariance. The values of item

difficulty are located inside the control limits (95% confidence

interval around the diagonal line), indicating that the item

difficulty values are invariant. In case 2, one of the questions

(Q4) lies outside the control limits indicating that this item

Figure 2. Item–student maps Each # represents four students and each ‘.’ represents one to four students. The values on the

left of each scale are logits. T¼ 2 standard deviations from the mean, S¼ 1 standard deviation from the man, M¼mean.
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should be investigated in order to improve the psychometric

properties of the test among different groups with low and

high levels of student performance.

Item Characteristic curve

From Table 3, the ICC can be drawn for items in both cases

and two or more ICCs can be drawn together (Figure 4) for

comparison. For the purposes of this Guide, we have selected

three item difficulty values to display their ICC differences. In

Figure 4, Case 1, Q15 and 16 are easy and hard, respectively

and Q17 is close to 0 logits. As we can see from Figure 4, there

is a 95% probability that students with an ability of 0 logits will

answer question 15 correctly, whereas the probability of

answering question Q16 is very low. Q17 is a good question as

there is a 50% probability that students with an ability of 0

logits will answer this question correctly. Comparison of these

curves provides a better picture of the location of students and

questions. In general, if a question shifts the curve to the left

along the student ability axis, it will be an easy question and a

harder question will shift the curve to right. The ICCs show

examples of easy, intermediate and difficult questions.

Discussion

The purpose of this Guide is to demonstrate how to use the

Rasch model as an alternative to CTT, to obtain diagnostic

information about objective tests in order to monitor and

improve the quality of assessments in medical education.

Developing valid and reliable tests of student performance

is necessary to improve assessment quality and to ensure that

curricula standards of fairness and objectivity are maintained.

In Rasch analysis, a sequence of steps must be taken in

order to analyse the exam data. The first step is to assess the

dimensionality of the test using the PCA of residuals (Linacre

1998). This analysis will reveal whether or not the test is

Figure 3. Item difficulty invariance in cases 1 and 2, respectively.
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unidimensional and is based on one underlying cognitive

construct or practical performance. Before running the PCAR,

however, an investigation of point–biserial correlation using

the CTT approach is recommended to investigate problem

questions. For example, if negative or low values are observed

this may be either an indication of data entry errors, items are

that are too easy or too difficult or easy items that have not

been answered correctly by students of high ability.

The second step in Rasch analysis is to look for the

eigenvalues of the unexplained variance remaining after the

Rasch factor has been removed. These left over items

constitute the ‘contrasts’, PCA of which demonstrates whether

there may further underlying constructs or dimensions. Along

with the assumption of unidimensionality, standardised

residual correlations between questions are inspected to

detect local independence. Locally, independent questions

have low inter-item correlations, indicating that differences in

responses to items are reflective of difference in the underlying

trait or ability being measured (Cohen & Sweedlik 2010).

Thirdly, we need to investigate miss-fit of items in the test.

Items that do not fit the Rasch model imply a lack of

unidimensionality and should be investigated. Lack of fit may

indicate either a misunderstanding of the item or that it is

measuring some other construct.

Fourthly, we need to make sure an item provides useful

information about the construct being measured by the test.

The item that all students answer either correctly or

incorrectly does not provide useful information about the

test. The item information curve can illustrate how an item

discriminates between students at different ability levels and

the sum of item information measures does this for the test as

whole. The item information curve also shows that different

reliabilities are measurable for the test according to different

student abilities. (Nunnally & Bernstein 1994; Cohen &

Sweedlik 2010).

Fifthly, the item–student map provides a quantitative and

visual display of the interaction between student ability and

item difficulty. On this diagram, one can see the whole

distribution of student abilities and the whole distribution of

item difficulty on the same logit scale. This enables a

comparison of the two ‘abilities’ and displays whether the

items are easier or harder than the abilities of the students. It

can be seen from this that a good test would have the student

ability and item difficulty distribution mirroring each other as

shown in Figure 2(c). A ‘perfect’ test that completely fitted the

Rasch model would have both mirrored distributions around a

mean of 0 logits.

Sixthly, item difficulty invariance needs to be measured to

ensure that item difficulty is constant across the student

ability range.

Finally, the ICCs need to be examined to compare and

identify easy and difficult items. Probabilities associated with

Figure 4. ICC for questions 15, 16, 17 from Table 3.
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each item can be used in future standard setting procedures to

improve the accuracy and credibility of the pass mark.

Summary

(1) Rasch analysis is a method of post-examination analysis

that goes beyond CTT to investigate the relationship

between item difficulty and student ability. As such, it

deals with how students interact with an exam and how

exam items interact with students of different ability.

(2) Rasch analysis provides diagnostic and quality feed-

back about test items and student ability to help

medical educators improve the exam cycle.

(3) The Rasch model provides useful information about the

intrinsic quality of test items which is independent of

student ability.

(4) Rasch analysis provides useful graphical displays that

enable test constructors to evaluate the effectiveness of

their assessments.

(5) ICCs can be used to compare and identify easy and

difficult items.

(6) A good test that fits the Rasch model should have the

following characteristics.

(a) It should be unidimensional i.e. it should be

aimed at a single underlying construct, either

cognitively or practically.

(b) When analysed for dimensionality by PCAR, all

items in a perfect test should load into the Rasch

Factor. (In practice this is unlikely due to natural

randomness in the data set).

(c) All items should display local independence and

should not be correlated with a sub-set of other

items.

(d) Item difficulty should be independent of student

ability as measured by item difficulty invariance.

(e) Items should ‘fit’ the Rasch model using ‘infit’ and

‘outfit’ statistics.

(f) The TIF should have high values across the

majority of the student ability range leading to

high reliability and better differentiation.

(g) The item map should display item difficulty and

student ability mirroring each other about a mean

of 0 logits.

Although we have used a knowledge-based test as

an example in this guide, the methods described here can

equally be applied to the data obtained from individual OSCE

stations.

Declaration of interest: The authors report no conflicts of

interest. The authors alone are responsible for the content and

writing of this article.

Notes on contributors

MOHSEN TAVAKOL, PhD, MClinEd, is a Lecturer in Psychometrics in the

University of Nottingham. He is an editor of the on-line journal

International Journal of Medical Education.

REG DENNICK, PhD, MEd, FHEA is a Professor of Medical Education in the

University of Nottingham.

References

Andrich D. 2004. Controversy and the Rasch model: A characteristic of

incompatible paradigm? Med Care 42(1 Suppl):I7–16.

Bhakta B, Tennant A, Horton M, Lawton G, Andich D. 2005. Using item

response theory to explore the psychometric propertoes of extended

matching questions examination in undergraduate medical education.

BMC Med Educ 5(9):1–13.

Bond T, Fox C. 2007. Applying the Rasch model: Fundamental measure-

ment in the human sciences. London: Lawrence Erlbaum Associates

Publishers.

Chang KY, Tsou MY, Chan KH, Chang SH, Tai JJ, Chen HH. 2010. Item

analysis for the written test of Taiwanese board certification examina-

tion in anaesthesiology using the Rasch model. Br J Anaesth

104:717–722.

Cohen R, Sweedlik M. 2010. Psychological testing and assessment: An

introduction to tests and measurement. Burr Ridge, IL: McGraw-Hill

Higher Education.

de Champlain A. 2010. A primer on classical test theory and item response

theory for assessments in medical education. Med Educ 44: 109–117.

de Champlain AF, Melnick D, Scoles P, Subhiyah R, Holtzman K,

Swanson D, Angelucci K, McGrenra C, Fournier JP, Benchimol D,

et al. 2003. Assessing medical students’ clinical sciences knowledge in

France: A collaboration between the NBME and a consortium of

French medical schools. Acad Med 78:509–517.

Downing S. 2003. Item response theory: Applications of modern test theory

in medical education. Med Educ 37:739–743.

Hambleton R, Jones R. 1993. Comparison of classical test theory and item

response theory and their applications to test development. Educ Meas

Issues Pract 12:38–47.

Houston J. 2009. Judges’ perception of candidates’ organization and

communication in relation to oral certification examination ratings.

Acad Med 84: 1603–1609.

Iramaneerat C, Yudkowsky R, Myford CM, Downing SM. 2008. Quality

control of an OSCE using generalizability theory and many-faceted

Rasch measurement. Adv Health Sci Educ Theory Pract 13:479–493.

Linacre J. 1998. Detecting multidimensionality: Which residual data-type

works best? J Outcome Meas 2:266–283.

Linacre J. 2002. What do infit and outfit, mean-square and standardized

mean? Rasch Meas Trans 16:878.

Linacre J. 2011. A user’s guide to winsteps. Chicago: MESA Press.

McManus IC, Thompson M, Mollon J. 2006. Assessment of examiner

leniency and stringency (‘hawk-dove effect’) in the MRCP(UK) clinical

examination (PACES) using multi-facet Rasch modelling. BMC Med

Educ 6(42):1–22.

Nunnally JC, Bernstein I. 1994. Psychometroic theory. New York, NY:

Mcgraw-Hill.

Rasch G. 1980. Probabilistic models for some intelligence and attainment

tests. Chicago: The University of Chicago Press.

Tavakol M, Dennick R. 2011a. Making sense of Cronbach’ alpha. Int J Med

Educ 2:53–55.

Tavakol M, Dennick R. 2011b. Post examination analysis of objective tests.

Med Teach 33:447–458.

Tavakol M, Dennick R. 2012a. Post-examination interpretion of objective

test data: Monitoring and improving the quality of high-stakes

examinations – A commentary on two AMEE Guides. Med Teach

34(3):245–248.

Tavakol M, Dennick R. 2012b. Post-examination interpretion of objective

test data: Monitoring and improving the quality of high-stakes

examinations: AMEE Guide No 66. Med Teach 34: e161–e175.

Wright B, Masters G. 1982. Rating scale analysis. Chicago: MESA Press.

Wright B, Stone MH. 1979. Best test design. Chicago: MESA Press.

Yang SC, Tsou MY, Chen ET, Chan KH, Chang KY. 2011. Statistical item

analysis of the examination in anesthesiology for medical students

using the Rasch. J Chin Med Assoc 74:125–129.

M. Tavakol & R. Dennick

e848

M
ed

 T
ea

ch
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
Se

lc
uk

 U
ni

ve
rs

ite
si

 o
n 

01
/2

4/
15

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.


