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Abstract

Classical Test Theory has traditionally been used to carry out post-examination analysis of objective test data. It uses descriptive
methods and aggregated data to help identify sources of measurement error and unreliability in a test, in order to minimise them.
Item Response Theory (IRT), and in particular Rasch analysis, uses more complex methods to produce outputs that not only
identify sources of measurement error and unreliability, but also identify the way item difficulty interacts with student ability. In this
Guide, a knowledge-based test is analysed by the Rasch method to demonstrate the variety of useful outputs that can be provided.
IRT provides a much deeper analysis giving a range of information on the behaviour of individual test items and individual
students as well as the underlying constructs being examined. Graphical displays can be used to evaluate the ease or difficulty of
items across the student ability range as well as providing a visual method for judging how well the difficulty of items on a test
match student ability. By displaying data in this way, problem test items are more easily identified and modified allowing medical
educators to iteratively move towards the ‘perfect’ test in which the distribution of item difficulty is mirrored by the distribution of
student ability.

Introduction Practice points

The quality of assessment methods and processes is as e Rasch analysis is a particular method used in IRT.
e IRT supersedes CTT, in that it takes into consideration
in any form of educational activity. Undergraduate and ihe

important as the quality of the teaching and learning process

interaction between student ability and item
difficulty.
o The characteristics of a test that fits the Rasch model can

postgraduate medical examination data needs to be evaluated
using psychometric methods in order to understand, monitor,

control and improve the quality of assessments. Medical be identified, so that test developers can iteratively move

towards the ‘perfect’ test.

predictable measure of student performance over time to e The ‘perfect’ test is one on which the distribution of
minimise sources of variation in examination data. The post-

educators and standard setters need to provide a stable and

student ability is perfectly mirrored by the distribution of

examination analysis of objective test data can provide item difficulty.

the diagnostic feedback to not only improve the validity

and reliability of assessments, but also improve curricula
and teaching strategies (Tavakol & Dennick 2011b, 2012a,
2012b).

These analyses also allow for the identification of aberrant

Comparing Classical Test Theory

questions or individual skills assessment items (OSCE), which
are outside of defined control limits and consequently
could reduce the quality of the assessment questions (Wright
& Stone 1979).

The importance of such analyses and their interpretations
for improving student assessment are displayed in Table 1.

The purpose of this Guide is to generally explore in some
detail the way that assessment scores can be affected by
various influences and specifically how the use of Rasch
analysis can aid in detecting these influences, in order that
minimalisation will improve quality.

with Item Response Theory

This section of the Guide describes and compares the concepts
and methods that underpin Classical Test Theory (CTT), which
is the more traditional approach to psychometric analysis, and
Item Response Theory (IRT), which is a more developed and
contemporary approach.

CTT is relatively easy to understand and has some useful
techniques and outputs; by contrast IRT is conceptually more
complex but produces a much more comprehensive analysis
of an assessment, which takes into account both student and
exam item behaviour. As this Guide attempts to explain, the
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Table 1. Ways in which psychometric methods can improve medical education assessments.

discarded.

consistent way? and are all sites fair for all students?

difficulty and the student ability.

their performance.
can be examined by the Rasch model.

number of question and stations can increase reliability.

which are important in test score interpretation.)

categories.
14. Improving cases/SPs by detecting whether they are easy or difficult.
17. Identifying guessing strategies using the IRT models.
19. Improving inter-rater reliability, particularly using Rasch Modelling

interpreted correctly.

1. Modifying and improving individual questions and individual stations continuously: aberrant questions and stations can be detected and then restructured or

2. Improving examination blueprinting by deciding on the number of stations, cases, standardised patients (SPs) and detecting sources of measurement error in
cases/SPs; psychometric methods, such as the many-facets Rasch model, enables us to consider student ability, item difficulty, the difficulty of the rating
categories and the severity of examiners and their interactions simultaneously.

3. Improving the practical organisation of examination (e.g. sites, SPs, examiners, marking procedures); do SPs represent patients in a standardized and

4. Improving and developing new approaches for analysing and interpreting exam data; using IRT faculty are able to obtain further information about the item

5. Improving the credibility of the competence-based pass mark; using cluster analysis and Rasch analysis.
6. Optimising duration of OSCE stations; if many students fail a given station, this could be due to the fact that they did not have enough time to demonstrate

7. Improving the validity and reliability of checklists, rating and global rating scales; the construct validity and the check-lists that are interpreted by examiners
8. Improving the reliability of total OSCE scores and knowledge-based tests; improving item discrimination indices, stations and questions or increasing the
9. Improving inter-station reliability (the global rating scale versus checklists); using Cronbach’s coefficient alpha faculty can estimate the reliability of the
checklist score. In addition, it is possible to compare independent alpha coefficients of global rating scales and checklists using the Hakstian-Whalen test.
10. Evaluating and improving the internal structure of multiple choice questions and OSCE stations. (This helps to identify the domains that are being measured
11. Recognising, isolating and estimating measurement errors associated with students’ scores to gain a clearer picture for estimating the true score (e.g. the
effect of examination sites on students’ scores); the use of Generalisabilty (G) theory and the Rasch Model.

12. Generalisability (G) theory; monitoring and improving the quality of an OSCE through aggregate analytical methods (i.e. G studies).
13. Providing useful information about inconsistent ratings; if a category in a checklist has not been used by examiners, this category can be combined with other

15. Mapping item difficulty to student ability using the Rasch model. This helps faculty to compare the range of student ability and item difficulty.

16. Improving the construct validity of a test by the Rasch model; PCAR will provide diagnostic information about the construct validity of the test.

18. Investigating the variability of students’ scores on different knowledge cases or stations.

21. Using the Rasch model to reveal abnormal scoring patterns and to see whether the category responses employed in OSCE rating scales are being

22. Developing item banks which can be used in national assessment databases and for CAT.

practical user of IRT methods does not have to deal with its
complex mathematical constructs. By using the examples in
the text of this Guide, we hope the reader can concentrate
more on interpreting the post analytical outputs.

Traditionally the post examination results that are relayed
back to faculty are often based on CTT models, such as
descriptive reports of means, standard deviations, skewness
measures, box plots, item difficulty, item discrimination,
Cronbach and Kuder-Richardson reliability —calculations,
point-biserial correlation coefficients, standard error of mea-
surement and Generalisability (G) studies. CTT concentrates
purely on the items in the assessment and attempts to identify
sources of measurement error and unreliability in the
aggregate scores. With CTT, student ability is based on the
number of questions that he or she answered correctly
and the ability of a group of students is reported in terms of
aggregate statistics. The analysis and interpretations of
objective tests using these CTT techniques has been outlined
elsewhere (Tavakol &Dennick 2011a). Sometime the associa-
tion between aggregate student marks on variables, such as
OSCE sites, cases or examiners, are identified using statistical
procedures (e.g. chi-square and rtests). As the CTT model
focuses on the test and its errors, it provides little insight into
how individual students interact with the test and its questions
or how questions interact with individual students.
Furthermore, as CTT statistics are all based on the aggregate,
their values are sample size dependent. This means that the
correlation of individual questions with the total score will be

higher or lower purely on the basis of sample size,
independently of the quality of the question. Because of this
sample size effect, CTT may not always provide a greater
understanding of the quality of questions being tested
compared to IRT. Using the CTT model, investigators relate
test scores to true scores by understanding the nature of errors
and factors influencing the reliability of the test. In addition, if
different students have the same mark on the test it is difficult
to assess their ability, in terms of item difficulty, if they have
different response patterns to the test questions. Just because
students have the same mark does not mean they have
answered the same questions correctly. Using the CTT model,
it is not possible to calculate how individual students behave
with particular questions (Hambleton & Jones 1993).
Although the results of CTT provide a preliminary and
exploratory analysis of exam data, medical educators need to
further investigate the relationship between the ability of
students (independent of item sample size) and the ease or
difficulty of questions (independent of student sample size). In
order to look at this relationship, faculty need to use IRT which
overcomes the limitations of the CTT model and provides a
global picture of the distribution of student marks in relation to
the range of difficulty of the questions. An assumption of IRT is
that the probability of a student answering an item correctly is
a function of the item difficulty (B) and the student ability (D).
However, despite the theoretical advantages of the IRT
measurement model compared with the CTT model in the
medical education literature, it has received little attention,
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despite the fact that medical educators have acknowledged its
existence (Downing 2003; de Champlain 2010).

One of the main models of IRT is known as the ‘Rasch’
model; however this too has received little attention in test
item analysis. Using the search terms: ‘Rasch’, ‘Rasch analysis’
and ‘the multi-faceted Rasch model’, in searching all medical
education journal articles published between 1990 and January
2012 revealed only a few articles reporting on the application
of the Rasch measurement model for analysing individual
questions and individual OSCE stations (de Champlain et al.
2003; Bhakta et al. 2005; McManus et al. 2006; Iramaneerat
et al. 2008; Houston 2009; Chang et al. 2010; Yang et al. 2011).

Two parameter IRT (2PL) or three parameter IRT (3PL)
models are also available where item discrimination, item
difficulty, gender, student guessing behaviour or year of study
can be included in the analysis.

Given the limitations of the CTT model previously
described, the purpose of this Guide is to explain how the
Rasch model can be used for analysing and constructing tests
for assessing the knowledge and practical skills of medical
students. In this Guide, we will demonstrate that Rasch
analysis is a more sophisticated tool for the psychometric
evaluation of assessments providing a detailed and forensic
analysis of exam data that can be practically used to improve
test quality.

Methods

The Rasch model

Despite the complexity of the statistical and measurement
methods, used by the Rasch model, the results can answer
some simple questions given below.

e How well does a student answer a question if we know the
student’s ability and the item’s difficulty?

e What is the probability of a student answering an item
correctly given a measure of item difficulty?

e If student ability equals item difficulty, what is the
probability of answering the item correctly?

e What is the probability of a less or more able student
answering an easy or difficult item?

The Rasch model identifies, isolates and estimates student
and item measures to provide these probabilities.

In Rasch analysis, student ability and item difficulty need to
be measured in the same units, namely ‘logits’. Student ability
is the natural logarithm of the ratio of the probability of success
divided by the probability of failure, In(p/1-p). Higher logits
(positive values) imply greater levels of ability. Lower logits
(negative values) imply lower levels of ability. For example, if
a student answers 60% of a test's questions correctly, the odds
ratio for the whole test is In(§5) =+0.4 logit, which is the
student’s ability. The logit for item difficulty is calculated by
reversing the numerator and denominator in the above
formula. For example, if an item is answered correctly 80%
of the time, its difficulty is ln(%) = —1.38 logit. Student ability
and item ability can therefore be displayed on the same scale
of logits. Zero on the scale represents the centre of the ability
range and the centre of the difficulty range. A student with an
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ability of 0 logits has an average ability concerning the
knowledge being tested. Under the Rasch model, the
difference between student ability and item difficulty predicts
the likelihood of a correct answer. For example, if student
ability equals item difficulty, the difference is zero and hence
the probability of a student answering a question is 50%. If
student ability is greater than an item’s difficulty this predicts
the probability of a correct answer. If a student has an ability of
+3 logits and an item has a difficulty of +1 logits then the
probability of answering the question is 0.88. A key advantage
of the Rasch model is that item difficulty and student ability are
measured independently from each other (Andrich 2004), i.e.
the distribution of items on the test cannot influence the
student ability estimates and the distribution of students cannot
influence the item difficulty estimates.

With Rasch analysis the relationship between student ability
and item difficulty is displayed in an Item Characteristic Curve
(ICC) as shown much later in Figure 4. The ICC provides
informative data about each item and the probability of
answering a question correctly given the student ability. The
ICC also shows how an item contributes to the underlying
construct of interest which either can be the relevant cognitive
or psychomotor domain being assessed. The ICC displays
those items that do not contribute to the underlying construct
of interest as outliers on the scale. Investigating these items
and removing them from the test can improve the construct
validity of the test. For example, in a test we would not expect
to see low performing students having a high probability of
answering a given item correctly. We have explained how to
draw an ICC using student ability and item ability elsewhere
(Tavakol & Dennick 2012a, 2012b). To draw an ICC, readers
should calculate the item difficulty of a question and then
calculate the ability of all students. The ICC can then be drawn
using Excel™. In order to use Rasch analysis to evaluate an
assessment and to make valid predictions, the data should fit
the Rasch model as closely as possible. Within Rasch analysis,
there are a number of statistical processes used which can
provide evidence as to how well the observed data fits the
model. Lack of fit does not invalidate the model, on the
contrary, it identifies test factors and items which should be
examined further and which, if appropriately modified, will
improve the validity of the test. It is a goal of Rasch analysis to
produce a test that fits the Rasch model as closely as possible.
These concepts and processes are discussed in more
detail below.

Unidimensionality

One of the assumptions of Rasch modelling is that a test
optimally measures a single underlying construct; this is
termed unidimensionality. For example this underlying single
construct can be identified with cognitive ability in a knowl-
edge-based test or practical performance in an OSCE.
Unidimensionalty implies that all items in a test or all OSCE
stations assess a single construct or dimension. Therefore, we
need to ensure that the dimensionality assumption of a test is
not violated by some aberrant items. Simply speaking, if a
question or item cannot contribute to the underlying construct
of a test it should be excluded from the test. Removal of such
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items or questions will also increase the construct validity of
the test. One aspect of Rasch modelling therefore is the
identification of the dimensionality of the test. In this Guide,
principal-component analysis of residuals (PCAR) is used to
examine the unidimensionality of the test. The first or major
factor identified is commonly termed the Rasch Factor or
primary factor. If the data contributing to this factor are
removed analysis of the residual data may reveal further
factors termed for example the 1st, 2nd or 3rd ‘contrast’.
However, if the first ‘contrast’ identified has an eigenvalue (a
statistical measure of the number of questions making up a
construct) of less than two this means that the data
contributing towards this factor do not support an additional
underlying construct and the uni-dimensionality of the test is
supported (Linacre 2011). However, if an eigenvalue of 3.6 is
found in the first contrast this indicates that approximately four
items are measuring an alternative construct, by rounding up
to the nearest whole number. In order to make a decision
about this, we need to examine these items to see if they are
related to different content as this is a sign of the multi-
dimensionality of the test. However, if there is no meaningful
difference in the item content, this may not support the
multidimensionality of a test and the difference has occurred
by chance.

Response dependency

Another assumption of Rasch analysis is local independency of
items. This means that the probability of answering one item
correctly should be independent of the answer to other items.
When the value of an item is predicted by the value of another
item, the assumption of independency is violated. In the
context of the Rasch model, items with a high positive
correlation indicate that one of the two questions is redundant
for the test. Correlations greater than 0.50 between items are
considered an indication of response dependency and items
should be investigated. For example if item 1 has a correlation
coefficient of 70% with item 2 this indicates a local item
dependency between item 1 and item 2, suggesting both item
1 and item 2 are required for the test.

Reliability and separation estimates

In CTT, the reliability of a test is reported via the Kuder-
Richardson or Cronbach reliability coefficient, with a single
value ranging from 0 to 1, indicating the average inter-item
correlation among the question responses. In Rasch analysis
reliability is associated with the range of item difficulty as well
as student ability. As reliability measures are a function of the
interactions between students and items, multiple reliability
values can be reported. In the case of student ability reliability
is presented as ‘person separation reliability’ (PSR), which tells
us whether the test discriminates or spreads out a cohort of
students into groups according to their abilities on the test
(Wright & Masters 1982). In addition, the value of the PSR
indicates the reliability of the location of students among the
items measuring the same construct (Bond & Fox 2007).
A satisfactory value of PSR is similar to the value of
Kuder-Richardson or Cronbach’s alpha co-efficient, ranging

from 0.70 to 0. 95 (Tavakol & Dennick 2011a). However, a
useful reformulation of the PSR as the ‘person separation
index’ (PSD) provides further information about the reliability
of a test. It is equal to /r/(1 — r). The higher the value (> 2) of
the PSI the more student groups can be differentiated (Bond &
Fox 2007). For example, if a Cronbach’s alpha of 0.63 is
reported the PSIis ,/0.63/(1 — 0.63) or 1.64. This suggests that
the test was not sensitive enough to discriminate high and low
ability students as the value is less than 2.

Rasch item fit

‘Rasch item fit" statistics show how well or accurately data in
the test fit the Rasch measurement model, i.e. how well item
difficulty or student ability contributes to the underlying
construct of the test (Linacre 2002). This can be used to
identify ‘mis-fitting’ items and to measure the ‘dimensionality’
of the test. The Rasch process calculates an expected score
from each observed score using a chi-squared technique or
test for each item. Large deviations between observed scores
and expected scores can give a distorted picture of the test
although data which fits the Rasch model should show smaller
deviations. There are two types of items in terms of Rasch
fitness that can be identified by means of infit and outfit
statistics. Infit statistics are expressed as ‘infit Mean Square’
(infit MNSQ) or ‘infit 7 (infit ZSTD). Outfit statistics are
reported as ‘outfit MNSQ’ or ‘outfit 7 (outfit ZSTD). MNSQ
values can be used to judge the compatibility of the observed
data with the Rasch model, values between 0.70 and 1.30
indicating a good fit. A value of 1 indicates there is a perfect fit
but values less than 0.70 and greater than 1.30 are termed
misfitting and over fitting, respectively, and should lead to an
analysis of the items (Bond & Fox 2007). ‘Infit # values also
show the degree to which a question fits the Rasch model.
Observed data follow the Rasch model if the results of infit #
are non-significant (¢ between +2 and —2). Outfit and infit
statistics also indicate the degree to which a student fits the
Rasch model.

Although acceptable values of outfit statistics are similar to
infit statistics, it should be noted that infit statistics provide
more useful information about the relationship between the
ability of the students and the difficulty of items as they are
more sensitive to unexpected responses to items close to the
student’s ability level. Outfit statistics are more sensitive to
unusual observed data where students find questions very
easy or very hard or responses to items are far from the student
ability (Linacre 2011). For example, since less able students
struggle to answer difficult questions correctly if they do
answer some difficult questions the outfit statistic will reflect it
by creating a ZSDT value outside the acceptable limit. In
addition, if an item was very easy, say a logit of —3.0, we
would expect a large value for the outfit statistic suggesting the
item should be examined or removed from the test.

Test information function

Another useful feature of Rasch modelling is the ‘item
information function’ which is calculated by mathematically
combining information from student ability (D) and item
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difficulty (B). The sum over all items gives the ‘test information
function’ (TIF). Under the Rasch model, the TIF provides
useful knowledge about the reliability of the test at different
levels of student ability. Calculating a single value for the
reliability (e.g. Kuder-Richardson reliability or Cronbach alpha,
as in CTT) does not take into consideration that reliability is
actually influenced by student ability and item difficulty.
Therefore, if a test has a high reliability coefficient, one can ask
for which group of students is it reliable (low, moderate or
high ability students?).The Rasch method provides a test
information curve, where the sum of all item information is
plotted against student ability, which enables us to estimate
reliability at different levels of student ability, with higher
information indicating more reliability. A test containing highly
discriminating items will have a tall narrow curve. Less
discriminating items provide less information but over a
wider range. That is the test has poor reliability and should
be investigated and improved using psychometric methods.

[tem difficulty invariance

Another feature is ‘item difficulty invariance’ which provides
valuable information about the invariance or stability proper-
ties of item values within a test. Invariance in this context
means that the properties of an item are not influenced by the
ability of the students answering the item. A scatter plot of item
difficulty values from high- and low-ability students can
display a correlation that reveals the extent to which item
difficulties vary between the two groups. By inserting 95%
confidence interval control limits onto such plots items that are
not invariant or unstable with respect to ability can be easily
identified. Item difficulty invariance also allows us to identify
items that are useful across the ability range in order to
calibrate questions for item banks. This means that assessors
will have convenient access to a large number of tested
questions which are classified according to student ability and
item difficulty. Such questions can also be used for computer
adaptive testing (CAT) where the questions administrated to
students can be modified according to their performance on
the previous questions.

[tem Characteristic curve

As previously mentioned, an important feature of the Rasch
model is that the probability of a student answering an item
correctly in a test is a function of the student’s ability (B) and
the item difficulty (D). This function is depicted graphically in
an ICC. We have already shown how to draw the ICC
elsewhere (Tavakol & Dennick 2012a, 2012b). We indicated
that if the student ability is equal to the item difficulty
(B-D=0), the probability that the student will answer the
question correctly is 50% which can be seen in the ICC. By
knowing the student ability—item difticulty values for each
student we can draw, in Excel, the ICC to display the response
probability for any student attempting to answer any particular
item. (In fact, using ICCs it is possible to estimate a student’s
‘true’ score on a test). To simplify, if a test has two questions, a
student might receive a mark of 0, 1 or 2. If the student has an
ability of 0 logits they could have a probability of 0.23 of
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answering question 1 correctly and a 0.56 probability of
answering question 2 correctly. Therefore, their calculated
‘true’ score is 0.79/2. However, their ‘actual’ score can be
different.

Participants

The examination data used in this Guide was processed from
results obtained from 355 medical students in their final clinical
knowledge-based exam. We used Winsteps® software (Linacre
2011D), to produce simulated modifications of the data to create
examples for the purposes of this Guide. We did not require
approval from our research ethics committee as this study was
carried out using data acquired from normal exams within the
curriculum with the goal of monitoring the quality of individual
questions in order to improve student assessment.

Data collection

Knowledge-based test

The simulated knowledge-based questions were used to
assess cognitive performance of students in this study. The
test consisted of 43 questions to assess two clinical cases. Case
1 consisted of 24 questions on Clinical Laboratory Sciences and
Case 2 consisted of 19 questions on chronic illness in General
Practice. Each question was marked dichotomously, i.e.
students received 1 mark if they answered the question
correctly and 0 if they answered incorrectly. The potential
score for Case 1 and Case 2 was 24 and 19, respectively. There
was no negative marking for incorrect answers. Students
responded to the questions through an online assessment
system (Rogd, University of Nottingham) during a normal
summative examination.

Psychometric software

The Rasch measurement model (Rasch 1980) was used to
analyse the different response patterns obtained using
Winsteps® software.

Results

In this section, we will demonstrate the results of the Rasch
analysis of our simulated exam data under the headings
previously discussed. For each section, we will discuss the
following.

Unidimensionality

PCAR was performed to investigate the unidimensionality for
the combined cases and for each case. The eigenvalue for both
cases was 2 indicating that the test measured a single
underlying construct. For the 1st contrast both cases had an
eigenvalue of less than 2 indicating they also measured a
single underlying construct. Therefore the unidimensionality
for each case is supported and both cases are potentially
measuring the same underlying construct (Table 2).
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Table 2. Rasch factor analysis of the whole test, cases 1 and 2.

Factor 1
No. of Rasch factor (1st contrast)
Test questions (eigenvalues) (eigenvalues)
The whole test 43 19.4 2.0
Case 1 24 13.3 1.5
Case 2 19 9.7 1.7

In the whole test, the Rasch factor explained 19.4 items
(eigenvalues) of the variance. In Case 1, the Rasch factor
explained 13.3 items (eigenvalues) of the variance. In Case 2,
the Rasch factor explained 9.7 units of the variance. Factor
loadings in the whole test indicated that only one question
(Q28) had a factor loading greater than 40. Based upon these
values, it is unlikely that the item residuals (data left after data
supporting the first factor have been removed) identify a
further factor and therefore a unidimensionality model of the
whole test is supported. Following the removal of question 28
from the whole test, there was little effect on the value of factor
1 (eigenvalue =1.9) and therefore, we kept it in for the next
analysis.

Response dependency

The local independence assumption is not violated if the order
of the questions in an examination does not affect their
difficulty. Test Response dependency was assessed for the
complete test and for each case. Inter-correlations between
item standardised residuals for the whole test were less than
0.50, ranging from —0.18 to 0.29. Similar results were also
found for both cases 1 and 2, ranging from —0.13 to —0.18 for
case 1 and —0.17 to 0.37 for case 2. These results suggest that
items were locally independent and the local independence
assumption is not violated. The order of the questions
therefore does not appear to affect item difficulty.

Reliability and separation estimates

The PSR for the whole test was 0.65 with a PSI of 1.37. A PSI
value less than 2 indicates that the spread or separation of
students on the construct being measured was not satisfactory,
suggesting that the questions had low discrimination. Similar
findings were also found in Casel (PSR = 0.60; PSI=1.21) and
Case2 (PSR =0.44; PSI=0.88).

Rasch item fit

Table 3 shows item difficulty, standard error and item fit in
each case. The outfit statistics show that Q11 and 16 are not
within the acceptable range (both for MNSQ and ZSTD)
implying they needed to be investigated as they did not
contribute towards the underlying test construct. This could
also show that item difficulty does not map to student ability.
The infit mean square statistic shows that all questions are
within the acceptable range with a mean of 1.0. As we can see
from Table 4, the outfit MNSQ has a mean less than 1.00 and
Q5, 12 and 14 are outside the acceptable range of the outfit

Table 3. Iltem difficulty, standard error and infit and outfit statistics

in case 1.
Infit Outfit
Item difficulty
Question logits® SE®P MNSQ ZSTD MNSQ ZSTD
Q1 1.86 0.12 1.00 0.10 0.97 —0.40
Q2 0.71 0.13 0.96 —-0.87 0.91 —1.02
Q3 0.71 0.13 1.00 0.09 0.96 —-0.48
Q4 -1.52 023 097 -012 076 -0.75
Q5 2.85 0.14 1.04 0.60 1.01 0.15
Q6 —0.48 016  1.02 025 1.02 0.16
Q7 1.56 0.12 1.03 0.60 1.05 0.75
Q8 2.01 0.12 1.02 0.49 1.05 0.68
Q9 —-0.28 0.15 0.98 —-0.19 0.87 —0.80
Q10 0.38 0.13 1.00 0.04 0.95 —0.48
Q11 -0.78 017 1.04 0.38 1.63 2.59
Q12 —-0.97 0.19 1.03 0.25 0.96 —0.09
Q13 —1.28 0.21 0.97 —-0.14 1.00 0.08
Q14 2.1 0.29 1.01 0.11 0.87 -0.21
Q15 —-3.1 0.45 1.00 0.14 0.82 —-0.15
Q16 3.09 0.15 1.01 0.10 1.03 0.30
Q17 -0.15 0.15  1.04 057 1.20 1.34
Q18 —-0.28 015  1.01 015 112 0.80
Q19 —1.08 0.19 1.01 0.15 1.46 1.71
Q20 —0.63 017 0.99 —0.03 0.93 —0.33
Q21 —-0.13 0.15 0.99 —-0.14 0.98 —0.06
Q22 —1.68 0.24 0.99 0.03 0.85 -0.35
Q23 —-0.28 0.15 0.96 —0.49 0.82 —1.17
Q24 1.59 0.12 0.92 —1.85 0.90 —1.60
Mean 0.00 017 1.00 0.00 1.00 0.00
SD 1.562 0.07 0.03 0.50 0.19 0.90

Notes: ®ltem difficulty measured in logits (negative values indicate easier
questions).

bStandard error.

MNSQ: mean square (values between 0.70 and 1.30 are within acceptable
limits for the Rasch model).

ZSTD: value of t-test (values between —2 and +2 are within acceptable limits
for the Rasch model).

Figures in bold indicate questions outside Rasch model (Q11 and Q19).

MNSQ, indicating questions outside the 0.7-1.3 range. For
example, these items are too easy for all students and do not fit
the Rasch model and can hence distort the single underlying
construct of the test. In addition the ability of the students goes
beyond the ability of these items. These questions therefore
should be investigated.

Test information function

Figure 1 displays test information values for questions in cases
1 and 2, respectively. The TIF shows the reliability of the test at
different levels of student ability. The highest reliability values
are 0.76 and 0.66 in cases 1 and 2, where the ability of the
student is equal to 0. These curves indicate that both cases are
less reliable for low- and high-level students.

The graphs in Figure 1 illustrate the relationship between
student ability (measured in logits) and the sum of the item
information measures for the whole test. Reliability values are
calculated from the graphs. For example, in case 1 the
reliability value for individuals with ability 0 logits is calculated
as 0.76, whereas for students with ability —3.5 the reliability
estimate is 0.33.
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Table 4. Item difficulty, standard error and infit and outfit statistics

in case 2.
Infit Outfit
Measure
Question logits® SEP MNSQ ZSTD MNSQ ZSDT
Q1 1.81 0.12 1.05 1.12 1.07 1.20
Q2 2.57 0.13 1.04 0.62 1.10 1.06
Q3 1.46 0.12 0.99 -0.32 0.98 -0.27
Q4 0.21 0.13 0.93 —-1.13 0.91 —0.89
Q5 —4.05 0.71 0.99 0.21 0.36 —0.99
Q6 —0.06 0.14 1.05 0.63 1.19 1.56
Q7 0.80 0.12 0.96 —1.01 0.91 —1.42
Q8 —-0.47 0.16 1.04 0.42 0.94 —0.31
Q9 2.23 0.13 1.01 0.13 1.06 0.76
Q10 0.94 0.12 1.02 0.43 1.06 0.97
Qi1 —0.42 0.15 0.93 —-0.73 0.87 —-0.85
Q12 —2.63 0.36 0.98 0.06 0.54 —1.04
Q13 —1.83 0.25 0.95 -0.16 0.78 —0.60
Q14 —2.51 0.34 0.95 -0.07 0.56 —1.06
Q15 1.06 0.12 0.98 —0.51 0.96 —0.65
Q16 0.97 0.12 1.03 0.78 1.03 0.55
Q17 —1.11 0.19 0.98 —0.08 0.82 -0.77
Q18 —0.91 0.18 1.02 0.23 1.02 0.14
Q19 1.93 0.12 1.06 1.23 1.1 1.79
Mean 0.00 0.20 1.00 0.10 0.91 0.00
SD 1.77 0.14 0.04 0.6 0.21 1.00

Notes: ®tem difficulty measured in logits (negative values indicate easier
questions).

bStandard error.

MNSQ: mean square (values between 0.70 and 1.30 are within acceptable
limits for the Rasch model).

ZSTD: value of t-test (values between —2 and +2 are within acceptable limits
for the Rasch model).

Figures in bold indicate questions outside Rasch model (Q5, Q12 and Q14).
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Student ability
Case 1 * (r= test reliability)
Figure 1. Test information function.

Note: r=test reliability.
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Comparing students and questions

In case 1, students had a mean ability of 1.52 logits with a
standard deviation of 1.01, while in case 2, they had a mean
ability of 1.42 logits with a standard deviation of 0.89. This
indicates that case 1 was slightly easier than case 2. The mean
of item difficulty is 0 logits, by definition, since the mean value
is where 50% of items are answered correctly, (In(50/50) = 0).
But, case 1 had a standard deviation of 1.52, whereas case 2
had a standard deviation of 1.77. We can confirm that the vast
majority of questions are located between —1.52 and +1.52 in
case 1 and between —1.77 and +1.77 in case 2. Standard
deviations (and spread) of item difficulty are greater than
standard deviations (and spread) of student ability. The item—
student map clearly shows the relationship between student
ability and item difficulty of both cases (Figure 2).

Figure 2 displays the difficulty hierarchy of questions as
answered by the students for both cases. It can be seen that
student ability is greater than item difficulty for both cases and
hence, overall, students are more likely to answer questions
correctly. There are some questions with difficulty measures
below the least able student and few questions with difficulty
beyond the most able one. In case 1, student measures range
from approximately —1.0 logits to +5.0 logits and the item
difficulties range from —3.5 to +3.5 logits. This means that the
range of item difficulty is not as good as it could be as most
items are located on the ‘easy’ side. Similarly, such findings can
be calculated for case 2. It should be noted that a difficult test
has negative mean student ability and therefore, we would
expect to see the majority of questions at the top right side of
the map and students at the bottom left-hand side of the map.

45 1

Information

~

05 1

Student ability
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Figure 2. Item-student maps

Each # represents four students and each ‘. represents one to four students. The values on the

left of each scale are logits. =2 standard deviations from the mean, S=1 standard deviation from the man, M= mean.

In order to demonstrate an ideal situation we have created
some simulated data as depicted in Figure 2 (simulation 3). It
can be seen there is a range of item difficulties which match
the ability of students. It is worth noting that if the students’
mean ability in the test approaches 0, the ability of the students
will map directly to the difficulty of the items. This is the aim of
‘best test design’, to match student ability to item difficulty.

[tem difficulty invariance

Item difficulty values are divided into group of students (high
and low performance on exam data) in both cases. (Figure 3)

The graphs in Figure 3 show scatter plots of item difficulty
from high versus low ability student groups. 95% confidence
limits indicate the boundaries of questions that are within
invariance limits.

As can be seen in Figure 3, all the plotted questions
(highlighted in blue) for 24 questions lie along the diagonal
line. This is not a regression line, but the Rasch-modelled
relationship required for invariance. The values of item
difficulty are located inside the control limits (95% confidence
interval around the diagonal line), indicating that the item
difficulty values are invariant. In case 2, one of the questions
(Q4) lies outside the control limits indicating that this item
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Figure 3. Item difficulty invariance in cases 1 and 2, respectively.

should be investigated in order to improve the psychometric
properties of the test among different groups with low and
high levels of student performance.

[tem Characteristic curve

From Table 3, the ICC can be drawn for items in both cases
and two or more ICCs can be drawn together (Figure 4) for
comparison. For the purposes of this Guide, we have selected
three item difficulty values to display their ICC differences. In
Figure 4, Case 1, Q15 and 16 are easy and hard, respectively
and Q17 is close to 0 logits. As we can see from Figure 4, there
is a 95% probability that students with an ability of 0 logits will
answer question 15 correctly, whereas the probability of
answering question Q16 is very low. Q17 is a good question as
there is a 50% probability that students with an ability of 0
logits will answer this question correctly. Comparison of these
curves provides a better picture of the location of students and
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questions. In general, if a question shifts the curve to the left
along the student ability axis, it will be an easy question and a
harder question will shift the curve to right. The ICCs show
examples of easy, intermediate and difficult questions.

Discussion

The purpose of this Guide is to demonstrate how to use the
Rasch model as an alternative to CTT, to obtain diagnostic
information about objective tests in order to monitor and
improve the quality of assessments in medical education.
Developing valid and reliable tests of student performance
is necessary to improve assessment quality and to ensure that
curricula standards of fairness and objectivity are maintained.
In Rasch analysis, a sequence of steps must be taken in
order to analyse the exam data. The first step is to assess the
dimensionality of the test using the PCA of residuals (Linacre
1998). This analysis will reveal whether or not the test is
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unidimensional and is based on one underlying cognitive
construct or practical performance. Before running the PCAR,
however, an investigation of point-biserial correlation using
the CTT approach is recommended to investigate problem
questions. For example, if negative or low values are observed
this may be either an indication of data entry errors, items are
that are too easy or too difficult or easy items that have not
been answered correctly by students of high ability.

The second step in Rasch analysis is to look for the
eigenvalues of the unexplained variance remaining after the
Rasch factor has been removed. These left over items
constitute the ‘contrasts’, PCA of which demonstrates whether
there may further underlying constructs or dimensions. Along
with the assumption of unidimensionality, standardised
residual correlations between questions are inspected to
detect local independence. Locally, independent questions
have low inter-item correlations, indicating that differences in
responses to items are reflective of difference in the underlying
trait or ability being measured (Cohen & Sweedlik 2010).

Thirdly, we need to investigate miss-fit of items in the test.
Items that do not fit the Rasch model imply a lack of
unidimensionality and should be investigated. Lack of fit may
indicate either a misunderstanding of the item or that it is
measuring some other construct.

Fourthly, we need to make sure an item provides useful
information about the construct being measured by the test.
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ICC for questions 15, 16, 17 from Table 3.

The item that all students answer either correctly or
incorrectly does not provide useful information about the
test. The item information curve can illustrate how an item
discriminates between students at different ability levels and
the sum of item information measures does this for the test as
whole. The item information curve also shows that different
reliabilities are measurable for the test according to different
student abilities. (Nunnally & Bernstein 1994; Cohen &
Sweedlik 2010).

Fifthly, the item—student map provides a quantitative and
visual display of the interaction between student ability and
item difficulty. On this diagram, one can see the whole
distribution of student abilities and the whole distribution of
item difficulty on the same logit scale. This enables a
comparison of the two ‘abilities’ and displays whether the
items are easier or harder than the abilities of the students. It
can be seen from this that a good test would have the student
ability and item difficulty distribution mirroring each other as
shown in Figure 2(c). A ‘perfect’ test that completely fitted the
Rasch model would have both mirrored distributions around a
mean of 0 logits.

Sixthly, item difficulty invariance needs to be measured to
ensure that item difficulty is constant across the student
ability range.

Finally, the ICCs need to be examined to compare and
identify easy and difficult items. Probabilities associated with
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each item can be used in future standard setting procedures to
improve the accuracy and credibility of the pass mark.

Summary

(1) Rasch analysis is a method of post-examination analysis
that goes beyond CTT to investigate the relationship
between item difficulty and student ability. As such, it
deals with how students interact with an exam and how
exam items interact with students of different ability.

(2) Rasch analysis provides diagnostic and quality feed-
back about test items and student ability to help
medical educators improve the exam cycle.

(3) The Rasch model provides useful information about the
intrinsic quality of test items which is independent of
student ability.

(4) Rasch analysis provides useful graphical displays that
enable test constructors to evaluate the effectiveness of
their assessments.

(5) ICCs can be used to compare and identify easy and
difficult items.

(6) A good test that fits the Rasch model should have the
following characteristics.

(a) It should be unidimensional i.e. it should be
aimed at a single underlying construct, either
cognitively or practically.

(b)  When analysed for dimensionality by PCAR, all
items in a perfect test should load into the Rasch
Factor. (In practice this is unlikely due to natural
randomness in the data set).

(o) All items should display local independence and
should not be correlated with a sub-set of other
items.

(d) Ttem difficulty should be independent of student
ability as measured by item difficulty invariance.

(e) Ttems should ‘fit’ the Rasch model using ‘infit’ and
‘outfit’ statistics.

()  The TIF should have high values across the
majority of the student ability range leading to
high reliability and better differentiation.

(g) The item map should display item difficulty and
student ability mirroring each other about a mean
of 0 logits.

Although we have used a knowledge-based test as
an example in this guide, the methods described here can
equally be applied to the data obtained from individual OSCE
stations.
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